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Chapter 1
Introduction

1.1 Parallel Programming: a Problem?

Parallel computing has been a popular and fruitful computer science research sub-
ject for decades, but the long-awaited breakthrough towards mainstream, com-
mercial computing has yet to materialise.

The increased complexity of parallel computing when compared to conven-
tional sequential computing is one factor contributing to this delay. Another is
that while parallel hardware has over the years shown continuous signs of progress
and improvement (in terms of power, price, availability, etc.), parallel software has
always lagged behind and fallen short of expectations, making it difficult to actu-
ally use the hardware in a profitable manner. In a sense, new, sometimes radically
different parallel machines are being built before there has been enough time to
properly learn how to program the old ones.

Compiler technology is another important factor in parallel computing. We
know that programming parallel computers is in general more difficult, error-
prone and time-consuming than programming sequential computers. Higher level
programming languages explicitly designed for parallelism can be crucial in alle-
viating this burden, as well as in aiding portability and maintainability. But as
these programming languages generally involve abstracting away the complexities
of parallel architectures at a lower level, the demands on the compiler technology
(and consequently on the compiler programmers) increase. The applications pro-
grammer wants to be bothered as little as possible by aspects of the architecture
that have no direct relationship to the problem domain he or she is trying to
program for. However, a compiler needs to know about and take into account
all these aspects if it is expected to generate efficient code out of the higher level
specification.

This constant trade-off between the desire for ease-of-use and high levels of
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2 INTRODUCTION 1.2

Figure 1.1: The performance/effort trade-off.

abstractions on the one hand, and the desire for performance and machine-specific
optimisations on the other hand (Figure 1.1) is as ubiquitous (perhaps even more
so) in parallel computing as it is in other areas of software engineering.

Compilation software for parallel languages, while not necessarily having to
run on the parallel target architecture itself, is also still vulnerable to the de-
mands of constantly evolving hardware, system environments, and programming
languages. Maintainability and adaptability become even more important issues
than we already know them to be. Just as with programming in general, at least
a partial solution might be found in increasing the level of abstraction at which
the compiler itself is engineered, and it is with this subject area that the research
presented in this thesis is concerned.

1.2 Smarter Compilers: a Solution?

The central research question investigated in this thesis is whether by applying
tools and techniques from the fields of rewrite systems and generative program-
ming, we can create a higher level of compiler for parallel architectures, one that
is in fact itself (partially) programmable.

Given such a programmable compiler, we can plug into its framework ded-
icated modules consisting of rewrite rules implementing specific transformations
and optimisations (Figure 1.2). This would elevate the concept of the compiler
above that of the traditional, monolithic black box written in hundreds of thou-
sands of lines of conventional language code. Compiler writers will be able to
react to changes and concerns at both ends of the trade-off spectrum. If a specific
algorithm or class of algorithms needs to be written for a parallel architecture, the
application of user knowledge about the domain or the algorithm in question can
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Figure 1.2: A programmable compiler.

lead to an expansion of the compiler with new, dedicated optimisation modules.
If, on the other hand, existing programs need to be compiled for a new or updated
architecture for which the existing compiler does not generate optimal code any-
more, these lower-end changes can also be accommodated by adding or changing
specific rules. Optimisation and benchmarking become easier and less error-prone,
because these efforts can also take place at the higher abstraction level of the trans-
formation rules, thereby evading many of the maintainability and expandability
problems that plague more traditional compilers. The compiler-building envir-
onment and associated rule transformation language should be powerful enough
that such operations can be done in a modular, portable, interactive fashion.

In this thesis we present research into, and the implementation of just such
an open, programmable compilation framework, called Rotan. This compilation
framework includes support for a high-level, rule-based transformation language
called the Rule Language. Translation and optimisation operations on arbitrary
domains can be expressed in this language in a modular fashion, using rule engines
built out of individual rewrite rules. This allows a level of code-reuse and fine-
tuning that is not easily possible to achieve in conventional compilation systems.

While many of the techniques investigated in this thesis have a general applic-
ability to the fields of compiler construction and parallelism, it is only practical
to focus our attention on a smaller, representative area. We have chosen the
compilation of data-parallel programming languages as our focus. Data parallel-
ism is a programming model in which the distribution of data structures drives
the parallelism: the location of the data determines which process is responsible
for computations involving that data. Data-parallel languages and compilers are
quite successful, and will provide a strong real-world context in which to place
(and against which to compare) the research presented in this thesis.

1.3 Thesis Context and Overview
This thesis describes research initially performed in the context of the ParTool
project, a nationally funded Dutch parallel processing project. The work was
continued as part of the activities of the Parallel and Distributed Systems group
of the Faculty of Information Technology and Systems (ITS-PDS) at the Delft
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University of Technology.
The thesis is outlined as follows:
Chapter 2 (Data Parallelism) gives a brief general introduction to parallel pro-

gramming, followed by a closer look at the data-parallel programming model that
will be the focus for the remainder of the thesis. The chapter then introduces and
discusses certain key concepts in data parallelism such as SPMD Programming,
data distributions, and the designation of computation responsibility.

Chapter 3 (Compiler Construction Tools) describes compilation models for
sequential and parallel programming, i.e. it introduces the viewpoint of the com-
piler builder. An overview of existing compilation tools and approaches is given,
as well as a review of general-purpose transformation systems, the latter with
specific attention paid to their suitability for implementing a compilation system
for data-parallel programming systems. A new programmable compiler frame-
work called the Rotan system is proposed as a means of obtaining the levels of
flexibility, expressive power, and maintainability such a system requires.

Chapter 4 (The Rule Language) introduces the Rule Language, the rule-based
transformation language that forms one of the key components in the Rotan
framework. It allows the compiler builder to implement translations and opti-
misations by specifying high-level transformations on the parse tree of a source
program. This chapter explains the syntax and gives an informal operational
semantics of the Rule Language as implemented in the current Rotan prototype.

Chapter 5 (A Rotan Compiler for Vnus) describes the major test case for the
Rotan system: an implementation of a semi-automatically parallelising compiler
for the Vnus language. (Vnus is a programming language used as an intermediate
format in the compilation process of higher-level (data-)parallel programming
languages.) The parallelisation schemes used in this compiler are discussed, and
examples of their implementation as rules are given.

Chapter 6 (Experimental Results) presents a number of case studies in which
the Vnus compiler described in Chapter 5 is applied to data-parallel Vnus pro-
grams. Since a higher abstraction level is generally associated with a decrease
in efficiency, this chapter investigates the extent to which this holds true for the
target code generated by the Rotan Vnus compiler. The performance results of
these programs are then compared to those achieved by other compilers.

Chapter 7 (Evaluation) steps back from the details of the generated code, and
evaluates the experiences with the general Rotan system both in terms of its own
design criteria as well as in comparison to a different compilation system in use
at the Delft University of Technology.

Chapter 8 (Conclusion) closes the thesis with a summary and discussion of the
presented research topics, concluding with some suggestions for future research.

To aid the reader in following the various Rule Language and Vnus program
fragments given throughout the thesis, Appendix A and Appendix B give the
grammars for the Rule Language and Vnus, respectively. Appendix C contains
the Rotan domain definition for Vnus, expressed in the Tm data structure format.
Appendix D, finally, lists the largest single rule in the Rotan Vnus compiler. This
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is intended as an illustration of a truly non-trivial rule, and also conveys an
informal idea of the actual ‘upperbound’ for the rule complexity encountered in
the compiler.





Chapter 2
Data Parallelism

2.1 Introduction
In this chapter we will take a short tour of the field of parallel programming in
general, and data-parallel programming in particular. We introduce and explain
various concepts and terms that will be referred to frequently in this thesis.

We begin with an overview of parallelism in general, before narrowing our focus
to the topic of data parallelism. Using a simple vector addition as a running
example we illustrate concepts such as Single Program Multiple Data (SPMD)
programming, and data distribution specifications.

We then go into some of the issues concerning the efficiency of SPMD pro-
grams and introduce some of the optimisations, such as owner test absorption and
communication aggregation, that will be encountered in more detail in subsequent
chapters.

2.2 Parallel Programming
Parallel or distributed programming is a possible solution whenever conventional,
sequential programs executed on conventional, single-processor architectures do
not yield answers fast enough, or do not allow problems to be modelled with a
sufficient level of complexity or detail. Typical examples of this abound in the
field of High Performance Computing (HPC), where we find big simulation and
modelling applications such as used for e.g. weather-prediction [Rod96; Wol95]
and fluid dynamics [Wil02], or massive data processing applications such as World
Wide Web search engines [Bri98], or the search for extra-terrestrial life [SET02].

In those and many other cases, it makes sense to try and attack the problem
by distributing the computations over different processors, to be executed not
sequentially, but in parallel. This “many hands make light work” concept is a

7



8 DATA PARALLELISM 2.2

very intuitive and logical one. It exists both on the hardware level, where a set
of processors or machines will be able to execute (parts of) programs in parallel;
and on the software level, where algorithms can be formulated as concurrently
running processes or tasks, at different levels of granularity.

At the hardware level, parallel processing can be implemented within the
confines of a single machine, such as seen in low-cost Symmetric Multi-Processor
systems [Tum02] or in high-end supercomputers [Cra02; ASC02], but it can also
be implemented within a wider system of connected machines such as a Wide
Area Network (WAN), or indeed even the Internet. These latter cases are usually
described as “distributed computing”, but the boundaries between parallel and
distributed computing are hard to delineate.

What remains a common element is that in all these cases the most important
(often the only) purpose of introducing parallelism is the achievement of speedup.
People turn to parallel programming because this allows them to create programs
that are equivalent in functionality to a sequential version, but which take far less
time to run.

In the ideal case, the speedup should be linear : if the number of processes
concurrently working on the program is multiplied by a factor n, the execution
time should decrease by the same factor. In practice, there are a number of
pitfalls and problems associated with parallel programming, which make achieving
speedup, let alone linear speedup, a non-trivial exercise:

Intrinsic algorithmic limits. Amdahl’s well-known law [Amd67] states that
speedup will always be limited by the sequential, nonparallelisable parts
of an algorithm, and will therefore rarely be linear. While the effects of
Amdahl’s Law can sometimes be offset to a certain degree by scaling the
problem size along with the number of processors, it is indeed worth remem-
bering that many algorithms no not lend themselves well to parallelisation to
begin with. Even those programs that are parallelisable need careful consid-
eration — merely adding more processors often will not lead to satisfactory
speedup, and may in some cases actually increase execution time.1

Communication and shared resources. A parallel programming model in-
troduces a number of new issues that are not present in sequential program-
ming. Non-trivial parallel processes need to communicate and synchronise
in order to exchange data with each other, and they will have to share
available hardware and software resources (such as buses, memories, and
global variables) amongst themselves. This can lead to problems such as
deadlock, starvation, and race conditions. Even if these are all avoided on
the algorithmic level, the performance of the resulting program can still be
affected by issues such as load-balancing and resource contention.

1For instance, adding processors can increase inter-processor communication overhead costs
to the point where they outweigh the gain in decreased computation costs.
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Conceptual programming difficulties. Parallel programming is difficult to
do. It is not easy for the human mind to keep track of concurrently execut-
ing threads of control. It is also not always obvious what a good parallel
algorithm for a sequentially described problem might be.

These considerations make it more difficult for a parallel programs to be cor-
rectly written, let alone for them to be efficient and portable. We can speculate
that the lack of mainstream acceptability for parallel programming is at least in
some part due to the sheer difficulty involved in creating parallel software.

One way of tackling this problem is to develop more advanced compilation
techniques in order to help programmers create efficient parallel programs [Per96].
In Chapter 3 we will investigate this in more detail.

2.3 Parallel Programming Models
All parallel computer systems have the presence of multiple processes (or pro-
cessors, threads, tasks, etc.) in common, but two types of system are often dis-
tinguished, based on the memory model:

Shared memory systems. In a shared memory system, the processes all read
from and write to the same single memory space. In such systems, data does
not need to be distributed or communicated, which makes programming
easier. However, memory becomes a shared resource, which means that
processors must avoid accessing a memory location at the same time. Shared
memory systems also tend to scale badly on the hardware level.

Distributed memory systems. In a distributed memory system, the processes
all have access to their own, local memory space. In such systems, some
data will need to be distributed, communicated, and kept consistent, which
adds to the complexity of the programming. But since memory accesses
are local, this approach also avoids much of the resource contention that
plagues shared memory systems.

At the hardware level, there are also the Non-Uniform Memory Access time
(NUMA) systems, where there are different categories of memories and caches
available to a process, each with its own characteristics and access times. These
systems increase the scalability of shared memory architectures, and go some way
towards bridging the gap between shared and distributed memory.

A property that is often used to categorise parallel programming models is
granularity :

Coarse-grained parallelism. This model deals with large, self-contained units
such as functions or objects. These are scheduled to execute concurrently
and will explicitly communicate with each other via e.g. loosely-coupled
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message passing. Task parallelism [Has96] is a typical example of coarse-
grained parallelism.

Fine-grained parallelism. This model typically exploits parallelism that ex-
ists within a program at a lower level, for instance at that of statements
within a loop, or that of multiple small actions operating on large data
sets. Functional parallelism, that is: the dataflow type parallelism achieved
by analysing a program written in a functional programming language and
identifying the subtrees in the resulting dependency graph that can be eval-
uated in parallel, is an example of fine-grained parallelism.

Instruction-level parallelism. This model exploits the parallelism that exists
at the last stage of the compilation trail: the assembler instructions for the
program are mapped directly onto the available hardware in a way that
optimises resource usage.

Orthogonal to the granularity aspect, parallel programming models can also
be described by the level of explicit parallelism:

Explicit parallelism. A programming model is explicitly parallel if it is possible
(or required) for the programmer to explicitly use scheduling, communic-
ation and synchronisation primitives to implement the program’s parallel
flow of control.

Implicit parallelism. A programming model is implicitly parallel if it allows
the programmer to express algorithms in a sequential fashion, with the
parallelism inherent in the specification being extracted later on by the
compiler.

Programming models are seldom entirely explicit or implicit, and many hybrid
forms exist. Implicit parallelism is desirable, because it leads to a programming
model that is easier to program in. It is however not generally possible to extract
all the inherent parallelism from a program by automatic means at compile time.
After all, program flow may be dependent on conditions or values that cannot
be not known until runtime. Explicit parallelism tends to lead to more efficient
programs, because the programmer has absolute control and can ensure that the
available parallelism is fully exploited.

It is no surprise that the performance/effort tradeoff mentioned in Chapter 1
(Figure 1.1) still applies: all parallel programming models try to strike a balance
between how much information about parallelism the programmer needs to supply,
and how much information the compiler needs to discover by itself.

A particularly successful parallel programming model, and the one this thesis
is concerned with, is the data-parallel model.
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2.4 The Data-parallel Programming Model
We will use the following definition of the data-parallel model of computation:

Definition. Data-parallel programming is a form of parallel programming in
which the programmer specifies the distribution of data over the processors. It
is left to the compiler to choose and implement the distribution of the actual com-
putations over the processors.

Expressed in terms of the properties described in the previous section, data
parallelism is a fine-grained, implicit programming model. As the name implies,
data parallelism is data-driven: the actual, explicitly parallel computations (and
communications, where necessary) are deduced by the compiler from the only
aspect that the user is given control over: the distribution of data over the pro-
cessing units.

The challenge for compiler engineers is not just to create a compiler that
derives explicitly parallel programs from any given data distribution specification,
but to create one that does so in a manner that leads to an efficient, fast-executing
program.

Because of its focus on memory and data structures, data parallelism is well-
suited to distributed memory hardware architectures at the machine level. At the
algorithmic level, it is applicable to a large number of problem areas, from data-
base applications to array-based numerical applications. It is with this latter area
that we are particularly concerned in this thesis: numerical algorithms involving
vectors, matrices and other regular, large data structures are often suitable can-
didates for being implemented as a data-parallel program.

2.4.1 A Data-parallel Example
When adding two vectors of length n, a sequential program might perform the
required calculation element by element in a loop:

double a[n], b[n], c[n];

for (i = 0; i < n; i++)
c[i] = a[i] + b[i];

With a total of p processors at its disposal, a data-parallel algorithm may in-
stead allocate a part of the vectors to each processor’s memory, and then distribute
the additions over the processors accordingly. The program fragment executed
by each processor would then look like this:

double a[n/p], b[n/p], c[n/p];

for (i = 0; i < n/p; i++)
c[i] = a[i] + b[i];

This fragment only shows the core idea of data parallelism. In an actual
implementation there are a number of issues to consider, such as how the original
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data structures are divided over the processors, how the responsibility for different
calculations is divided over the processors, and how actual values and results are
communicated between processors.

Also important is the question of how these data-parallel programs are created
in the first place. They might be hand-written and customised for each processor,
or perhaps be (semi)-automatically generated from an algorithm specification.
Such a specification itself might be explicitly or implicitly parallel, or perhaps a
combination of both.

It is outside the scope of this thesis to give a complete overview of the field of
data parallelism, or to exhaustively consider all the possible approaches that can
be chosen to tackle the aforementioned issues. A more comprehensive treatment
can be found in e.g. [Hat91].

As will be described in more detail in Chapter 3, this thesis concerns itself with
semi-automatic compilation, and focuses on the generation and optimisation of
data-parallel programs from an implicitly parallel specification. These programs
do not contain any explicit knowledge of different processors or memories, but
contain a sequential algorithm that assumes a single global memory space.

For the remainder of this chapter we will focus specifically on those aspects of
data parallelism that are relevant to the research described in this thesis.

2.4.2 SPMD Programming
Single Program Multiple Data or SPMD programming is a form of data parallelism
in which each processor executes the same, explicitly parallel program, paramet-
erised by processor number, that acts on its own, separate data structures. The
processor number parameter is used in various expressions seen throughout the
program: array bounds and loop conditions are typical examples.

Because of this parameterisation, individual processors executing an SPMD
program can proceed in a loosely coupled fashion, and need not run in strict
synchronised lockstep. Each processor executes the same program, but the de-
pendence on the processor number parameter means that the different instances
can still be doing quite different things at any given moment in time.

For instance, a pseudo-code SPMD version of the vector addition example
given in the previous section might look like the code displayed in Figure 2.1.

In this — highly inefficient — program, we see that the values of the elements
in the right-hand side of the central computation, a[i] and b[i] , are commu-
nicated one by one, through paired send/receive commands to the processor that
‘owns’ c[i] . That processor will then use the values in the actual computation.
In SPMD programming, the send and receive primitives are typically provided by
a communications library linked with the program, such as a Message Passing In-
terface (MPI) library [Sni96] or a Parallel Virtual Machine (PVM) library [Gei94].

Because the tests involve the parameter p, which will be different for each
processor, the actual work done in each iteration of the loop can also be very
different. Some processors will be sending data, some will be receiving data,
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double a[n], b[n], c[n];
extern int p; // processor number

for (i = 0; i < n; i++)
{

if (sender(a[i]) == p)
send(owner(c[i]), a[i]);

if (owner(c[i]) == p)
receive(sender(a[i]), tmp_a);

if (sender(b[i]) == p)
send(owner(c[i]), b[i]);

if (owner(c[i]) == p)
receive(sender(b[i]), tmp_b);

if (owner(c[i] == p)
c[i] = tmp_a + tmp_b;

}

Figure 2.1: Element-wise SPMD version of data-parallel vector addition.

some may do both or neither, some will compute an addition, some will do no
computation at all. Yet every processor executes the same program, which needs
only be written, executed, and debugged once. This is a major advantage of
SPMD programming.

There are of course still many ways in which the efficiency of our crude example
program can be improved.

In terms of memory usage, it is not necessary for each processor to have local
arrays of size n. Since each processor is only responsible for storing a subset of the
original vectors’ data, the local arrays can be shortened to n/p in size (assuming
the data structures are distributed evenly over the processors).

In terms of actual communication, the program as given communicates one
data element at a time, which is very inefficient. It would be an improvement if
the communication could be aggregated, with all elements that need to be sent to
processor q collected in a buffer that can be sent with a single blocksend command.

Also, this program will communicate elements even if these elements are
already local to the processor in question. This might for instance be the case if
the vectors a, b, and c are all distributed in exactly the same fashion. In such a
case, a[i] and b[i] will already reside on the same processor as c[i] , and no
communication would actually be necessary at all.

As a last example, it is also inefficient for each processor to loop through the
entire index space of n elements. It might be possible to iterate only over the
n/p elements the processor in question is responsible for, rather than waste time
performing tests on all the other elements. For certain regular forms of data dis-
tribution, it is possible to derive a formula for the exact set of elements that p is
responsible for, instead of looping over the entire index space and executing ex-
pensive run-time tests on ownership. This process is described in detail in [Ree96]
and referred to there as owner-test absorption.
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Implementing these and other improvements is a time-consuming and error-
prone task when done manually. However, given certain formalised ways of de-
scribing data and computation distribution, they can be derived automatically
and incrementally from a starting specification. The development of compiler
technology that facilitates this is the primary focus of this thesis.

2.4.3 Data Distributions

In typical data-parallel programming languages such as High Performance Fortran
(HPF) [HPF97] or Spar/Java [Ree01], the user specifies an algorithm using global
address-space data structures, but then annotates the program with hints to the
compiler on how the data structures should be distributed over the available
memories.

For example, in HPF an n × m matrix grid might be distributed cyclically
in the first dimension over a linear processor array by using the special !HPF$

‘distribute’ annotation as follows:

double precision, dimension(1:n,1:m) :: grid
!HPF$ distribute grid (cyclic,*)

In Spar/Java, the same distribution might be specified using the ‘on’ pragma
and a lambda function:

double grid[n,m] <$on = (lambda (i j) P[(cyclic i)])$>;

In data-parallel programming it is typically assumed that each available pro-
cessor has a corresponding local memory. For the remainder of this thesis, we
will make the same assumption, and therefore use phrases such as “allocated to
a memory” or “allocated to a processor” interchangeably.

Although the specific details will vary from language to language, there are in
general five major kinds of data-distribution functions. These are illustrated in
Figure 2.2, where each variant is used in turn to distribute a vector v of length
N = 12 over a processor array p consisting of P = 3 nodes.

Block distributed. The data is divided into P blocks of at most X = dN
P e

consecutive elements each. Each processor p is then assigned one block. In
Figure 2.2, this means that processor p will be assigned elements p · X, p ·
X + 1, p ·X + 2, . . . , p ·X + (X − 1).

Cyclic distributed. The data elements are assigned one by one to the processors
in round-robin fashion. In the current example, processor p will end up with
vector elements p, p + 1 · P, p + 2 · P, . . . , p + (dN

P e − 1) · P .

Block-cyclic distributed(k). Blocks of k consecutive elements are assigned to
the processors in round-robin fashion.
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Figure 2.2: Five forms of data distribution.

Replicated. Replicated data is available locally to each processor, and need
never be fetched from another processor at all. In other words, each pro-
cessor p is assigned all elements 0, 1, . . . , N − 1. It is up to the SPMD-
generating process to ensure that replicated data remains consistent across
processors: if a replicated value changes on one processor, all other copies
of the variable in question have to be updated as well.

Local(p). The data in question is local to processor p alone. Local distribution is
often used as the default distribution for ‘small’ data, such as loop counters
or accumulators. Again, p is assigned all elements 0, 1, . . . , N − 1, but there
is now no need to synchronise with the other processors (unless the data
is explicitly requested, of course): the values are truly local to processor p
only.

Both block and cyclic distributions are special cases of block-cyclic distri-
bution. Block distribution equals block-cyclic(dN

P e), cyclic distribution equals
block-cyclic(1).

Allowing explicit block and cyclic distributions is a useful shorthand, because
these two variants suffice for many algorithms, and when reasoning about them
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they allow useful simplifications of the more complex formulae associated with
the generic block-cyclic distribution [Ree96].

Figure 2.2, and our examples so far have all used one-dimensional data struc-
tures and a one-dimensional processor array, that is: a set of equivalent processors
numbered p0 through p(P−1). Both data structures and processor arrays can be
generalised to multidimensional structures, in which case the situation becomes a
bit more complex.

If a two-dimensional matrix is mapped to a two-dimensional processor array,
it becomes possible to map non-linear blocks of data elements to a processor, for
instance by specifying different distributions in each of the available dimensions.

Figure 2.3: A two-dimensional data distribution for a matrix.

Figure 2.3 shows a matrix A mapped onto a two-dimensional processor array.
The elements are distributed cyclically in the first dimension, but block-cyclic(2)
in the second dimension. Every processor ends up with a smaller sub-matrix of
elements.2

For the remainder of this thesis, we will consider a one-dimensional processor
array only. This is sufficient for many different algorithms and applications. It is

2In this example the matrix dimensions each have an odd number of elements whereas the
processor dimensions are even. This illustrates a load-balancing problem that can be inherent
in all non-block distributions: processor p0 ends up with almost twice as many elements as p2,
and will presumably have to do nearly twice as much work. These effects can be avoided by
choosing a more suitable distribution.
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true that the use of multi-dimensional processor arrays open up more possibilities
for parallelism specification or program optimisation, but when it comes to the
compiler technology needed to implement such higher-dimensional specifications,
not that much more (other than the extra complexity) is added to the concepts
and rewrite rules that will already cover for the one-dimensional case.

We will still continue to consider multidimensional data structures, however.
With a one-dimensional processor array, such a structure can only be distributed
along one of its dimensions. Thus, it is possible to for instance distribute a matrix
column-wise or row-wise, by specifying a distribution for the first or for the second
dimension. The non-distributed dimensions are said to be collapsed : the elements
in these dimensions will be allocated to the same processor as was specified along
the corresponding distributed dimension. Figure 2.4 illustrates this.

Figure 2.4: Collapsed data elements.

2.4.4 Computation Responsibility
An SPMD program must also somehow specify which of the available processors
is responsible for which computation.

One possible solution is to allow the programmer to specify explicit computa-
tion distributions, analogous to the data distributions. Data structures, proced-
ures, as well as specific (parts of) statements can be annotated with directives or
hints concerning the responsibility of computation.
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A less explicit, and far more ubiquitous approach is to use the so-called owner-
computes rule, which equates computation responsibility with data responsibility.
This is the approach that has been followed in the examples given so far. The
processor that owns the data element on the left-hand side of a specific statement
is in charge of performing the computation that determines this new value. If the
computation uses data elements that do not reside on that processor, those data
elements must be retrieved from the processor where they do reside.

There are other approaches still. Computation responsibility could for instance
be assigned to the processor that already owns the majority of the data elements
occurring in the computation, in order to minimise communication. Or a compiler
may choose to have some computations performed by multiple processors, also
with the same goal. And as with data distribution, it can also be left up to the
programmer to specify an exact location for certain computations by adding an
annotation or pragma to the original computation code. Such approaches are
outside the scope of this thesis, however, and for the remainder of this document
we will assume that computation responsibility follows from data ownership: the
owner computes.

2.4.5 Conclusion
The data-parallel programming model has been one of the more successful ap-
proaches to parallel computing to emerge from the last few decades of scientific
research and commercial development. It is flexible, powerful, and offers a level of
abstraction that is a workable compromise between high- and low-level concerns:
abstract enough for programmers to prefer using it over e.g. explicitly parallel
variants, low-level enough for compilers to be able to generate acceptably efficient
code.

Nevertheless, it remains true that this programming model presents many
interesting and new problems to the compiler builder. Writing compilers for
parallel languages in general, and for data-parallel languages specifically, is far
from a ‘solved’ problem, successful attempts such as the various High Performance
Fortran compilers [Per96] notwithstanding. It is therefore a fruitful area in which
to try new approaches to compilation.

In the next chapter, we will focus on the parallel compilation model rather
than the parallel programming model, and investigate techniques and approaches
that can help ease the task of creating compilers for (data-)parallel programming
languages.



Chapter 3
Compiler Construction Tools

Compilers are large and complex software systems. Over the years, many tools
for generating compiler components from higher level specifications have been de-
veloped. These tools can aid compiler writers in getting a grip on the complexity,
and thus decrease the development effort involved in writing compilers.

In this chapter we investigate existing types and categories of tools. We then
focus on transformation tools specifically, and will formulate some desirable prop-
erties for such tools to have. We then compare and contrast a number of existing
systems in terms of these characteristics. In the final section of the chapter, we
introduce our own entry in the field: the Rotan system.

3.1 Compiling Sequential Programming Languages
Figure 3.1 shows the traditional compilation path on sequential architectures for
transforming a higher level source program into machine-executable target code.

The parsing phase is comprised of lexical analysis, in which the text of the
source program is converted into syntactical tokens, and the actual parsing, in
which an abstract syntax tree is created from the token stream, and then converted
to a semantically equivalent representation in some intermediate format.

In the analysis phase, the parse tree is traversed and additional semantic
information about the program is collected. Typical examples of analyses are the
marking of the places in a program where variables are defined and used (def/use
analysis), or the determining of the types of expressions (type inference).

In the transformation phase a wide spectrum of further analyses and optimi-
sations are applied to the program tree. Taken together, these make up the actual
transformation of the source program into a different domain.

The synthesis phase maps the transformed program tree to a target output
stream. It is in this phase that final machine-dependent transformations and

19
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Figure 3.1: The compilation path.

optimisations are performed, such as register and memory allocation.
In general, the parsing and analysis phases are performed by software com-

ponents collectively referred to as the compiler frontend, and the synthesis phase
by a component called the compiler backend.

The four compilation phases are not rigorously defined, and the boundaries
between them are often blurred. Also, there are some forms of analysis and
transformation which do not occur just once, but which are repeated throughout
the compilation process. Examples of this are performing analysis during parsing
phase by decorating the parse tree with inherited or synthesised attribute values,
and the use of a constant-folder to simplify expression trees at various times during
the program tree’s life span.

Even though many of the algorithms and patterns used in compiler design
are well-known and long-established, the creation and especially the maintenance
and expansion of compilation systems remains a difficult and time-consuming
task. Given this relatively static nature of the compiler state of the art, one
might have expected that by now writing compilers would be a solved problem,
in which standard libraries and code reuse can extensively be used to easily piece
together a compiler from predefined modules.

In reality, this is not the case. There are always crucial differences involved that
make what works well for compiling one specific source language to one specific
architecture not suitable for compiling a different language to a different archi-
tecture. In particular, different languages often need different internal formats
in order to fully exploit the advantages of the languages during compilation, and
this too, makes code reuse more difficult.
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Nevertheless, there are patterns and frameworks in each of the compilation
phases that have emerged over time as stable and useful in many cases, and over
the years compiler builders have created and used tools and technologies that
allow specifications at even higher levels of abstraction than offered by high-level
programming languages.

Often these tools are not so much libraries of predefined manipulations, but
rather higher-level code-generating programming tools, where that which is unique
to each compiler can be expressed by the compiler writer in a language of a kind,
while that which is the same will be generated or taken care of by a run-time
system.1.

Such tools are very common in parsing, frequent in analysis and synthesis, but
rarer in the more complex and less clearly defined transformation phase.

Parsing

For the parsing phase, compiler construction tools have become commonplace.
Generators for lexical analysis, such as lex [Les75] and flex [Pax95], allow the
specification of a language’s tokens as a list of regular expressions from which a
scanner is then generated. Parser generators such as yacc [Joh75], bison [Don90],
CUP [Hud96], ANTLR [Par95], and JavaCC [Web02], allow the specification of a
grammar as a list of production rules, from which a parser for the language defined
by that grammar is then automatically generated. The so-called scannerless parser
SGLR [Bra02] does away with the need for a separate lexical phase altogether.

In all these cases, deriving parsing tools automatically from higher-level spe-
cifications offers the compiler writer advantages similar to those which any higher-
level programming language offers: increased ease of use and more flexibility, ex-
pandability, maintainability, and portability. The focus can be on specifying the
actual language to be scanned and parsed (the ‘what’), rather than on specifying
the logic that performs the scanning and parsing (the ‘how’). That logic is gener-
ated from established templates that can be considered constant factors that no
longer need to be explicitly created (and debugged, and maintained) every time
they are used.

Analysis

There are a few automated tools that can be used in constructing systems for
program analyses such as dataflow and type inference systems. One such tool is
the Berkeley Analysis Engine BANE [Aik98], another is the commercial static-
data analyser PAG [Mar98].

In general, analysis is so closely entwined with the transformation phase that
it is common to see an analysis pass approached as a ‘read-only, side-effect free’

1Many of these meta-programming techniques can be seen as examples of an approach that
has recently become known as generative programming [Cza00].
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type of transformation, expressed in whatever formalism or tool is used during
that phase.

Transformation

The transformation phase is less well-defined than the parsing or synthesis phases
are. It is the component where in typical compilation systems most of the com-
plexity and non-standard algorithms are located.

Nevertheless, this phase also lends itself to a specification at a higher level of
abstraction, The most frequently encountered mechanism being that of rewrite
systems that allow one to specify a transformation in terms of pattern matching
rules with associated actions. These systems take care (to varying degrees) of
generating the code for traversing the program tree (the so-called treewalkers) and
applying the transformations. We will discuss transformation systems, including
our own system Rotan, in more detail in Section 3.3 of this chapter.

Of great importance to the transformation phase is the intermediate format
used to represent the program. If the format is not powerful enough to express
the semantic information that is present in the source program, and if analysis
results cannot be stored and retrieved in an accessible manner, the amount of op-
timisation that the transformation engines will be able to perform will be limited.

Synthesis

In the synthesis phase, too, there has been an increase in the level of abstrac-
tion over the years. This can be seen from languages such as twig [Tji86] and
beg [Emm89], where high-level descriptions of target machines’ instruction sets
allow the automated generation of backends for different target architectures, or
from systems such as Machine SUIF [Hal96], that allow a modular specification
of instruction optimisations, independent of compiler environment or even com-
pilation target.

In line with this trend for increased abstraction levels, there has been also been
a move, especially in experimental compilers, towards more wide-spread use of
source-to-source translations. Here the target language is no longer assembly code
or an intermediate format, but rather a higher programming language such as C or
C++. In this way the already available, existing compilers for these languages can
become the backend generators, freeing the compiler writer for the source language
from having to consider machine-dependencies or assembly-level optimisations (at
the expense of some efficiency loss). Source-to-source translations are often used
in those cases where the source language itself is at a still higher abstraction level
than the target language (e.g. fifth generation languages, or parallel programming
languages such as Spar/Java).

A third abstraction approach often encountered in synthesis is that of the in-
termediate framework, in which the main compiler compiles to an abstract archi-
tecture that is itself platform-independent. For different target platforms there
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will be custom implementations of a backend for the intermediate framework.
Examples of such frameworks are p-code [Pem82] and the Java Virtual Machine
(JVM) [Lin99] (both explicitly designed for a single front end language), and the
Architectural Neutral Distribution Format (ANDF) [Dia94] and .NET [Mic02]
(both of which also abstract the front-end by being designed for many different
source languages).

3.2 Compiling Parallel Programming Languages
When compiling parallel programming languages for parallel architectures, the
level of sophistication required from the compiler increases.

Parallel programming languages are often high-level, with a large amount of
implicit semantics. Examples of this are shared, global address spaces that need
to be converted to distributed local memories in the target code; and parallel loop
constructs such as foreach or forall, which have complex semantics that cannot
always be mapped one-to-one to the available lower-level primitives in the target
language [Dec97a; Dec97b; Dec96].

Parallel machines offer more degrees of freedom than sequential architectures
do. In typical cases there will be multiple processors and multiple memories; and
these can be connected in a large variety of different ways. As we saw in Chapter 2,
the generated code needs to take into account issues such as communication and
synchronisation.

Another factor is that on a parallel architecture it is rarely sufficient to write
code that ‘merely’ executes correctly — it also has to run fast. As a result, the
optimisations performed in the transformation phase of the compilation play an
even more important role in the parallel case than they do in the sequential case,
and are often more complex as well (or at the very least will cause a considerable
increase in the number of simpler transformations).

Because of the focus on optimisation and target code efficiency, the parallel
compilation trail needs to support many opportunities for tweaking and perform-
ance tuning by the programmer. This begins at the source level by the presence
of language constructs that allow the user to give hints or instructions to the
compiler as to how certain constructs can be interpreted or optimised. This can
for instance be done in the form of pragmas or annotations as used in languages
such as Booster [Paa91; Bre91; Bre95], HPF [HPF97] or Spar/Java [Ree01]. The
intermediate format used by the transformation system also needs to be powerful
and expressive enough that these hints can be properly stored, interpreted, and
accessed.

Furthermore, it is desirable for the system to provide sufficient hooks to allow
the compiler writer to create and experiment with new optimisations, and to be
able to tweak and rearrange existing ones.

A high-level transformation system based on rewrite rules is, with these points
in mind, a good candidate for a solution. In such a system, optimisations can be
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programmed individually, can be reordered and reused, and the compiler writer
can focus on the optimisations themselves rather than have to be concerned with
issues such as low-level, explicit data structure traversal and modification.

Apart from the expressiveness of the system, another requirement is that the
compiler writer should be offered a programming environment that allows iterative
development of rules.

A final requirement is that it should be possible for the compiler writer to
‘escape the system’, and have the option to extend parts of the optimisation
process by applying external code that is not expressed in the transformation
system itself.

Taking all this together, we can list a set of desirable properties a transform-
ation system should have for it to be considered powerful enough to be used in a
compiler for a (data-)parallel language. It should be noted that these properties
are not specific to compiling parallel languages as such — in practice one can
expect them to serve any complex compilation goal equally well.

1. The system has to be rule-based. Transformations are specified as “this
becomes that”, preferably using a specification that is not tightly coupled
to a specific host language. This allows the system to be used in many
different contexts.

2. The actual mechanics and implementation of applying the transformations
(i.e. traversal and manipulation of the code tree) should, to as large an extent
as possible, be generated or handled by a run-time system; the programmer
should not have to explicitly write code for it.

3. Rules should be modular and easy to reuse at different places in the com-
pilation trail, similar to functions in a conventional programming language.

4. The system should be interactive, so that hands-on experimentation with
rules is possible, and transformations can be defined (and debugged) itera-
tively, leading to shorter development times.

5. The intermediate format used by the system should to a large extent be
definable or at the very least accessible by the compiler writer. It should
be generic, yet powerful enough that it can support the many different
semantics that will be found in the categories of languages that it will be
used to encode. Many compilation systems require the compiler writer to use
one specific intermediate format, which is then sometimes entirely internal
to the system and not accessible or even visible to the compiler writer.

6. The transformation language should abstract from the intermediate format
that its programs act upon in the sense that different formats should be
supported. This leads to the concept of a parameterisable, typed, rule-
based language, in which the framework of the language remains the same,
but where different domains can be plugged into that framework to yield
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a new language for every new intermediate format, as long as that format
complies with some general rules (i.e. expressible as some combination of
tuples, lists, and expressions).

7. It should be possible for the compiler writer to ‘escape’ the high level rule
language, and have access to the intermediate tree for other kinds of pro-
cessing. This can involve delegating the tree to be processed by completely
different tools or components, or simply specifying part (or all) of a trans-
formation rule in a lower-level language than the rule language itself.

In the next section, we will describe some existing systems, and investigate
their suitability for implementing a data-parallel compiler in, in the light of these
requirements.

3.3 Transformation Systems
There are many different language/tree transformation systems, all with their
own focus and positioning along various axes of comparison (programmability,
performance, application domain, etc.).

In general, higher levels of abstraction provide more ease-of-programming,
lower levels of abstraction provide more expressiveness. Many interesting char-
acteristics of transformation systems (maintainability, efficiency, etc.) can be
directly correlated to the system’s positioning on this primary axis.

All transformation systems start from the assumption that coding transform-
ations by hand is cumbersome and error-prone, and that at least some forms
of additional abstraction and/or predefined (run-time) support are necessary to
reduce the complexity of the task.

The transformation systems generally make use of a specific host language
(e.g. C, C++, Java), which the system then either extends with additional prim-
itives and keywords, or translates to, or both (many systems are implemented as
preprocessors).

Most systems provide some form of support for all the stages in the compila-
tion process, from parsing (lexical scanning, parse tree and abstract syntax tree
generation), to data structures (common formats for interchange between com-
ponents or with the outside world), to the transformations themselves (rules and
strategies), to output (code generation, or just pretty printing).

The early 90s saw the appearance of many monolithic systems, in which the
aforementioned forms of support were all locked into a single encompassing custom
framework that tried to be all things to all people. Recent developments see these
large systems more and more being replaced (or augmented) by component-based
systems that allow the user varying degrees of freedom when it comes to choosing
different components, or interfacing with software not directly provided by or
expressed in the system [Ber98].
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It is not the intention of this chapter to give a complete review of trans-
formation languages and systems. The field is very widespread, touching upon
many application areas from computer algebra and theorem proving to language
specifications and code generation. A recent, global overview of rewrite-based
systems can be found in [Hee02], while [Vis01b] provides an interesting taxonomy
of program transformations.2

In the following pages, we will take a look at some of the better-known or more
interesting transformation systems, with a focus on their suitability for translating
and optimising data-parallel languages.

TXL

TXL [Cor02] is a mostly functional, rule-based transformation language. The
system implements its own lexer and parser for context-free grammars. Externally
defined data types cannot be incorporated, everything has to be specified using the
TXL syntax. The data structure format is internal, and not explicitly specified.
There is no way to access the data structure itself.

Transformations can be programmed in a rich language of pattern-matching
replacement rules. Subrules and rule-sequencing are both possible, as is the link-
ing in and application of user-defined (sub)rules not written in TXL. However,
these rules will have to implement their own parsing — TXL import and exports
only strings. Both global variables and parameters are available to pass data
between rules. Many predefined rules exist.

As mentioned, TXL only outputs strings. Pretty-printing is completely under
the user’s control, and can be specified along with the parser rules.

TXL’s support for polymorphism is not very elegant. TXL is still very much
a monolith — despite the possibility of external rules, it is clear that integration
with other components is not TXL’s strong suit.

TXL could very well be used for creating a data-parallel compiler, but the lack
of control over the intermediate format is a serious limitation.

App

The App system [Nel00] consists of a C++ compiler with embedded App constructs
for defining algebraic data types and matches on these types.

The defined algebraic types are mapped directly to various C++ constructs,
making use of templates, the Standard Template Library (STL) and Run-Time
Type Information (RTTI), amongst others. Integration with user code is ob-
viously possible: user-defined types can be directly used in the algebraic type
specification, and there are provisions for incorporating fragments of C++ code
into the data types.

2A good Internet resource for information on language transformation systems in general is
the Program Transformation Wiki website [Vis02], whereas for specific compilation purposes
the Catalog of Compiler Construction Tools website [GMD02] is worthwhile.
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The ‘match’ constructs allows the programmer to abstract from having to
manually implement case-based dispatch and tree traversal administration. App
generates the dispatching framework (complete with dynamic casting etc.). Pat-
terns can be positional or non-positional. Since the actual traversal function is
under the user’s control and merely gets ‘expanded’ by App, arbitrary traversals
can be implemented.

App is a system that is very close to actual C++ code — no power is lost. Its
strength is mainly in the area of type definition, the matching and traversal are
there, but it appears fairly rudimentary in that much of the administration and
treewalking still needs to be implemented manually.

App could be well-suited to write a data-parallel compiler in, but the trans-
formation logic can easily get entangled and lost in the C++ code. In this respect,
App is too close to C++.

Tm

Tm [Ree92; Ree03b] is a generic template manager and macro expansion language,
capable of generating arbitrary code for many different host languages in many
different contexts.

The Timber compilation system is an example of a dedicated transformation
system (in this case: an implementation of a compiler for the data-parallel lan-
guage Spar/Java) that uses Tm extensively in its transformation phase.

In Timber , most transformation rules are specified in Tm templates, from
which the C++ code for corresponding treewalkers is then automatically generated.

From an abstraction viewpoint, Tm code specifications are close to the target
template language. This is good from the point of view of allowing the compiler
writer access to the program tree at all times, but does mean that the a lot of
domain knowledge is necessary, and that rules are not always as easy to write
and maintain as would be the case if the template constructions were available as
higher-level abstractions in a language of their own.

We will encounter Tm in more detail later in this chapter, when we discuss
how Tm is used in the implementation of our own Rotan system.

Prop

Prop [Leu97] implements its own lexer and parser for context free grammars.
Algebraic datatypes can be specified in a functional manner — trees, DAGs and
graphs are all possible, and there are constructors for tuples and records. User-
defined datatypes can be incorporated by encapsulation (giving them the proper
access functions etc.).

Like App, Prop is a C++ preprocessor. The algebraic types are mapped to
C++ classes. This means that after parsing, the syntax tree (and a large amount
of generated support) is fully available to the programmer as a tree of instances
of these classes.
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Also like App, Prop defines a switch-like ‘match’ construct for implementing
(conditional) type-based dispatches of user-specified code. It provides more sug-
aring and more power, e.g. repetition and cost minimisation are both supported,
as are rule variables, and vector and list forms. Orthogonal to the pattern match-
ing, simple inference classes are supported, along with rewrite rules that act on
them. Constructs for garbage collection and object persistence are available. In
addition to the simple pattern matching, concrete rewrite rules (both replacing
and applicative) are supported.

The greatest disadvantage of Prop’s wide range of supported functionality is
that it is a complex, kitchen-sink type of language. It adds over a hundred new
keywords to C++. Prop is no longer actively being developed.

The ASF+SDF Meta-environment

Asf+Sdf [Bra01] works on syntax definition formalisms expressed in SDF (Syntax
Definition Format), i.e. a context-free grammars.

Its internal representations are called ATerms — the annotated trees that
form the interchange format between all of the Asf+Sdf tools.

Transformations are specified as equational rules, which the main system ap-
plies until no further reductions are possible. There is no facility for specifying
deterministic rule strategies, but since the introduction of the Toolbus architec-
ture it has become possible for other components that act on ATerms (such as
Stratego) to be used to that effect.

Escaping from Asf+Sdf rules to external code, or even linking to it, is not
possible. The first versions of Asf+Sdf were very monolithic systems. In com-
bination with Toolbus, it has become more modular, but its focus is still mostly
as a system for interactive prototyping.

The needs of data parallelisation and optimisation are not particularly well-
served by the non-deterministic ASF rules, which can also has negative implica-
tions for the performance of the system. The more recent Asf+Sdf components
such as JJForester and Stratego are more promising in this respect.

JJForester

JJForester [Kui01] acts on a syntax definition formalism in the SDF format (i.e.
a context-free grammar).

Its intermediate format is a Java class hierarchy, corresponding to the data-
types defined in the specification. Internally, Asf+Sdf’s ATerms are used.

JJForester does not have direct support for transformations (i.e. no ‘match’ or
‘rule’ constructs — it does not extend the Java language at all), but it generates
tree traversal methods of which the ‘action’ part for each type encountered can
be filled out as desired by the programmer (by inheriting from, and then refining
methods of, generated base classes). The companion JJTraveler framework for
implementing visitor combinators makes it possible for the programmer to have
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complete control over the tree traversal and application sequence of the various
transformations.

The generated Java code, which together with user-supplied code forms the
program that will act on the actual input and generate the actual output. There
is no special output support.

JJForester is more a component than a real transformation system. It helps
hide the complexity of programming tree traversal functions by hand, and allows
the programmer the full power of Java-level programming, but actual transform-
ations need to be manually programmed. JJForester truly becomes useful when
applied in conjunction with other tools, such as the JJTraveler framework, or the
various XT tools.

Stratego

Stratego [Vis01a] acts on a text string that specifies (and will be converted to) an
ATerm.

Stratego modifies the input term by applying rewrite rules. Rules are ba-
sically simple one-step global applicative rules of the kind used in most term
rewriting systems, but Stratego offers a complete meta-language of user-definable
rule strategies, that allow fine-grained control over rule-application flow.

Stratego’s main power is that it brings determinism to the world of term
rewrite systems, with a correspondingly powerful matching mechanism. However,
escaping to lower-level code is not possible, and externally defined rules cannot
be invoked.

XT

XT [Jon01] is a diverse collection of tools. Typically, a syntax definition in SDF
will be the starting point.

ATerms are the common tree exchange format between all the individual XT
components.

XT is primarily a bundling of a number of existing tools, many of which
can also be found in the Asf+Sdf environment. XT allows a more command-
line oriented, pipelined approach towards generating a compiler. The primary
transformation components in XT are JJForester and Stratego.

XT is far more extendible than Asf+Sdf, and allows easy interfacing with
components written in other languages. It is a very coarse-grained framework —
it is the individual components that are of the most interest here.

XT by itself does not do any transformation, but is used as the glue that
connects components together and makes them form a compilation system.

mtom

mtom [Mor01] acts on user-defined terms in any formalism (e.g. ATerms or XML).
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Its intermediate format is any user-defined data structures in the goal language
for which the appropriate interface methods (access, equality, etc.) have been
specified.

mtom is a true preprocessor. Its constructs are specified directly in the
host language program, as yacc-like constructs. User-defined data types can be
wrapped in an API that allows mtom to access them (after access and equality
functions, etc. are defined). mtom only provides support for rules with pattern
matching, reasoning that the entire right hand side is best left expressed in the
host language. User-defined evaluation strategies are supported.

Like Prop, this is another rather low-level abstraction layer on top of the host
language (typically C++) that takes care of generating some of the more tedious
code associated with pattern matching and rewrite rules. There is no real support
for rule strategies, though. The emphasis in mtom is specifically on supporting
the user’s data structures. It is therefore a good tool for integration with existing
code. mtom programs defined to work on ATerms could easily be a component in
XT, for instance.

The mtom rule construct lacks some of the power that would be necessary for
comfortably specifying data-parallel optimisations and transformations.

JastAdd

The JastAdd system [Hed01] works on a parse tree that an external parser (in
this case JavaCC/JJTree) must generate for an abstract context-free grammar
specification in JastAdd ’s custom formalism,

Its intermediate format is a custom Java class hierarchy, corresponding to the
datatypes defined in the specification.

Like JJForester, JastAdd generates treewalkers that can be used by user-
defined visitors. It employs code weaving to add user-defined methods defined
in separate modules directly into the parse tree classes. It also has support for
modules that allow classic, declarative attribute grammar specifications to be
woven into the generated code.

JastAdd is another low-level system that does not support transformations
directly, but generates a lot of code that supports the application of generic code
to the tree in various helpful manners. The combination of visitors and class
weaving is interesting.

JastAdd has no concept of rewriting rules.

Maude

Maude [Cla99] works on input strings that are parsed by the system itself. The
usual algebraic types are possible, including object oriented types that use inher-
itance.

The intermediate format is unspecified, and not directly accessible in any way.
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Transformations are specified in terms of equational and rewriting logic. Al-
gebraic types are specified and rules are listed. The system applies these rules
until no further simplifications are possible. It is not possible to install strategies
to direct the rule-application in a deterministic fashion (as alternative to the
usual non-deterministic rule applications). No escape to a lower-level language is
possible.

Maude is not a system that is very well-tailored for data-parallel program
transformations — it is clearly powerful, but needs everything expressed in its
own formalism, which is too generic and high-level.

The abstract syntax tree is directly manipulable, but there is little control
over the rules, and there is no way to escape to C++ and act on the tree directly.

Conclusion

A problem with many of the systems described above is that they are either
generic transformation systems, not explicitly tailored towards being used for
compilation of data-parallel programming languages, or that they are low-level
systems that lie so close to the host language that not sufficient abstraction and
run-time support are offered, and the ease-of-use and flexibility suffers.

This is particularly reflected in the fact that many of the intermediate formats
used are not well suited to the intermediate format necessary for adequately de-
scribing data-parallel programs in.

3.4 The Rotan System
In this section we describe the Rotan system: a compiler construction tool spe-
cifically targeted at the transformation and optimisation phases of the compilation
process [Bre92]. It was specifically built to possess all the desirable traits listed
in Section 3.2:

1. The system is rule-based, with individual rules expressed in a high-level
language called the Rule Language (described in detail in Chapter 4).

2. The Rotan run-time system interprets the rule and applies it to a given
parse tree. The compiler writer can choose different modes of application
and tree traversal, but needs to specify these actions explicitly.

3. Rules are identified by name, and can be recursively ordered and aggregated
into higher-level units called drivers and engines.

4. The Rotan system contains a command-line environment with built-in sup-
port for working with and debugging rules.

5. Rotan works on a generic higher-level intermediate format known as a do-
main. Domains are generic enough that they can be used to express a wide
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spectrum of intermediate formats, yet specific enough for the system to
be able to act on them efficiently. The underlying implementation of the
intermediate format is up to the compiler writer.

6. The Rule Language is parameterised: each specified domain will automatic-
ally lead to a customised version of the Rule Language in which new attrib-
utes and types become available that correspond to nodes in the domain.

7. The Rule Language has a mechanism for incorporating C++ code into the
rule itself. This can be used to ‘escape’ from the higher level and perform
dedicated tasks, or call external libraries, etc. The full intermediate tree is
available to these functions (although it is of course now up to the program-
mer to ensure that e.g. the parse tree remains valid — with greater power
comes greater responsibility).

3.4.1 Creating a Rule-based Compiler
Figure 3.2 illustrates the way in which a custom compiler for a specific domain
or language is created using Rotan.

rcc

domain rulessource

transformed
source

rcc

rulessource

transformed
source

rcc

source

transformed
source

Core Rule Compiler Instantiated Rule Compiler Specific Rule Compiler

Figure 3.2: The Rotan compiler framework.

Step 1. The term rcc stands for Rotan Command-line Compiler. This is the
outer-most Rotan framework. The rcc is a command-line environment and
run-time system with an associated plug-in architecture that generically
supports loading, applying and debugging rules.

Step 2. Once a domain is defined (by creating a so-called domain file, and by
either writing or generating a corresponding parser and pretty-printer), the
result is a specific instance of the Rotan system, parameterised to this do-
main. The command-line environment will now be able to read and write
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programs written in the domain language, and rules can now be written
using the types and data structures defined by the domain.

Step 3. Now that we have an instantiated Rotan compiler, we can add a collec-
tion of actual rules that implement a specific transformation, which can be
anything from a single optimisation to a complete translation. This final
result is referred to as a Specific Rotan Compiler, and yields a program that
can actually be used as a command-line compiler that will process any given
source program.

3.4.2 Domains and Tm
In the Rotan system, the format used to specify a domain is that of the Tm
data structure specifications [Ree00a]. These specifications define a collection of
data types which can have inheritance and member-of relationships to each other.
Generic collection structures are supported in the form of lists and tuples.

For example, the specification of a top-level Vnus program is as follows:

Vnusprog == NObject +
(pragmas:[Pragma],

declarations:[Declaration],
statements:Block);

Vnusprog is a type that inherits all data members from the type NObject, and
in addition has three data members of its own: a list of elements of type Pragma,
a list of elements of type Declaration, and a member of type Block.

Each of the types mentioned can either be an external type (defined as a C++

class somewhere), or a type itself defined in the domain file. For instance:

Block == NObject +
(scope:String,

statements:[LabeledStatement]);

This defines the type Block as inheriting from NObject as well, with a scope
and a statement list as data members. The full domain data structure file for the
Vnus language is given in Appendix C.

After a data structure definition file has been created, the next step is to write
one or more so-called Tm template files.

A template file can contains arbitrary text that will be copied verbatim to an
output file when the template is run through the Tm executable. However, in the
template file the programmer can also specify template language commands for
the Tm macro preprocessor. In the template language all lines starting with a dot
(‘. ’) are commands. Such lines are not copied to the output, but interpreted by
Tm instead. In both commands and normal template text, expressions starting
with a dollar sign (‘$’) are expanded. These expressions can denote arithmetic
expressions (e.g. $[42 + 666] ), variable references (e.g. $v or $(count) ) and
function invocations (e.g. ${sort foo bar baz }).
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Most importantly, the dollar variables and template commands can refer to
the types and names defined in the data structure file. For example, if we had a
domain file for Vnus that consisted of the two type definitions mentioned earlier,
Vnusprog and Block, the following template:

.foreach t ${typelist}
#include "${tolower $t}.h"
.endforeach

would generate the following output:

#include "block.h"
#include "vnusprog.h"

(The Tm function ${typelist } expands to the list of all types defined in the
domain file.)

In this fashion we have written special-purpose templates for Rotan that ex-
pand our type definitions into the source code for an associated class hierarchy in
C++.

This class hierarchy is then used to implement the domain’s abstract syntax
trees and various operations upon them, such as tree traversal and rule applica-
tion.

The following excerpt from the template file for the Vnus class hierarchy
illustrates how templates are used in the generation of a Rotan compiler:

.. class.ht -- template file for generating C++ header files.

..

.. include file containing constants and variable definitions:

..

.insert dom.t

..

.. iterate over the types defined in the domain file:

..

.foreach t ${typelist}

.if ${member $t $(generated)}

.. create a file for each type:

..

.redirect ${tolower $t}.g.h

..
#ifndef ${toupper $t_g_h}
#define ${toupper $t_g_h}

class ${capitalize $t} : public ${capitalize ${inherits $t}}
{

protected:

.. Define a corresponding C++ data member for each type data member.

..

.foreach m ${telmlist $t}

.if ${eq ${ttypeclass $t $m} "single"}
${capitalize ${ttypename $t $m}} *p${capitalize $m};

.else
List *p${capitalize $m};

.endif

.endforeach
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public:

.. Create a constructor method.

..
${capitalize $t} (

.set sep " "

.foreach m ${telmlist $t}

.. data members of this type

.if ${eq ${ttypeclass $t $m} "single"}
$(sep) ${capitalize ${ttypename $t $m}} *in${capitalize $m} = NULL

.else
$(sep) List *in${capitalize $m} = NULL

.endif

.set sep ,

.endforeach
);

.. The following functions are be present for every type/class:

..
int NrDescendants() const;
Object *Descend(const int) const;
Object *Descend(const int, Object *);

static Object *New();
bool isEqual(const Object& o) const;
Class *IsA() const;
Object *Clone() const;
void PrintSource(Text&) const;

};

#endif

.endredirect

.endif

.endforeach

The Tm function ${inherits $t } expands to the direct superclass of the
type stored in variable $t ; the function ${tolower $t } converts the string stored
in $t to lowercase characters, and so on.

For the Vnus type Block the above template generates the following C++ class
header in a file block.g.h:

#ifndef BLOCK_G_H
#define BLOCK_G_H

class Block : public NObject
{

protected:

String *pScope;
List *pStatements;

public:

Block (
String *inScope = NULL

, List *inStatements = NULL
);

int NrDescendants() const;
Object *Descend(const int) const;
Object *Descend(const int, Object *);
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static Object *New();
bool isEqual(const Object& o) const;
Class *IsA() const;
Object *Clone() const;
void PrintSource(Text&) const;

};

#endif

The constructor method Block() can be used to create a node of the abstract
syntax tree during parsing. The various Descend() methods are used to traverse
the tree when searching for pattern matches, and the Clone() method is e.g. used
when applying a transformation.

The actual template code used in Rotan is more extensive, and also takes care
of e.g. generating #include directives, forward class declarations, and accessor
functions for all data members. The C++ implementations for these methods
are also generated using Tm templates, with the exception of the pretty-print
PrintSource() method which contains functionality that cannot be deduced from
the type definition file. Its contents must therefore be explicitly specified by the
user.

In addition to these class headers and sources, we also use template files to
generate an instantiation of the Rule Language for the Vnus domain. This in-
cludes a specification (in lex/yacc format) of a parser that accepts the types and
identifiers of the domain as keywords, and generates program trees for rules. This
makes it possible to write a rule that will search a VnusProg syntax tree for oc-
currences of a Block node in the subtree rooted at its declarations field (in order
to e.g. perform function-to-procedure conversions).

These components taken together make up the Instantiated Rule Compiler.
The final step is to create the actual rules that specify the transformations we
are interested in for this domain. The next chapter describes the Rule Language
used in the Rotan system for this purpose.



Chapter 4
The Rule Language

In Chapter 3 we have described the Rotan framework. In this chapter we will
describe the Rule Language, the language in which the rules for an actual Rotan
compiler instantiation are described.

The Rule Language allows the specification of transformations on tree-like
data structures (such as for instance parse trees). These transformations take the
form of sets of rewrite rules.

4.1 Rules and Domains
The Rule Language is a hierarchical language. Its smallest unit of functionality
is the rule. Rules can be grouped and ordered into drivers; drivers grouped and
ordered into engines. In terms of conventional imperative programming languages,
engines can be compared to modules, drivers to functions, and rules to statements.

A rule acts on a data structure called a domain tree. Each rule tries to match a
pattern to a substructure of the domain tree. If a matching structure is found, we
say that the entire rule matches, and will then fire. This means that the matched
substructure will be altered or processed according to a recipe also described in
the rule. If a match cannot be found, the rule is said to fail. The following
pseudo-code describes a generic rule:

rule rulename ;
begin
match pattern // What to search for

→
action pattern // What to replace it with

end.

A domain tree is a set of connected, user-defined nodes. The manner in which
the nodes are connected comprises the structure of the domain tree. There are two

37
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basic, domain-independent structure constructs in the Rule Language for building
a domain tree: the list and the expression.

A list is a finite sequence of elements. A list element can itself be another list
(with other lists as elements, and so on), an expression, or a node. Heterogeneous
lists are allowed.

An expression is a construct consisting of an operator plus a number of oper-
ands.

Operands can themselves be other expressions (with other expressions as op-
erands, and so on), or a lists, or nodes. Heterogeneous expressions (consisting
of e.g. a binary operator that acts on one list operand and one expression oper-
and) are allowed. Operators cannot be lists or expressions, but have to be nodes
derived from the intrinsic Rule Language node type Operator .

Nodes form the leaves of the domain tree, and are defined beforehand by the
creator of the domain. As we have seen in the previous chapter, each domain
is defined by its own set of node types. For example, a domain for a numerical
calculator might contain Integer and Real nodes; a domain for a programming
language might contain Statement and Procedure nodes. In Rule Language pat-
terns a node is characterised by an identifier that denotes the type of the node, as
specified in the domain definition file. Rules are written in a domain-instantiated
version of the Rule Language, where the node types form a set of fixed entities
that can only be used, not changed.

Node types are under the control the domain programmer. In the imple-
mentation of the Rule Language, types are mapped to C++ types (user-defined
or intrinsic). Complex types, such as tuples and classes, are allowed. In the Rule
Language this creates the possibility of nodes that contain references to other
nodes, lists, or expressions (see Section 4.3.2).

Expressions, lists, and the set of nodes belonging to a specific domain are all
generic, system-defined building blocks as far as the Rule Language is concerned.
It is up to the process that generates the domain tree to take semantics into ac-
count and ensure that the domain tree describes a valid string in the language
the domain represents. The Rule Language can be used to program generic trans-
formations that are not by themselves guaranteed to lead to a valid result tree,
but the Rotan system does implement type-checking (using information about the
relationship between types (such as inheritance) learned from the domain defini-
tion) to prohibit transformations that would break the type validity of the domain
tree. Moreover, it is not allowed to transform a list into an expression, or a node
of type A into type B, if B is not derived from A. In this sense, the approach of
the Rule Language is similar to that of e.g. parser-generators such as yacc.

4.2 Basic Patterns
A rule specifies a certain match pattern for the system to look for in the given
domain tree. Since we want to be able to search for any kind of entity that may



4.2 BASIC PATTERNS 39

occur in the domain tree, a match pattern can be either a list, an expression, or
a single node type, as the following (simplified) grammar rules show:

pattern:
list
expr
node

list :
< patternlist >

expr :
operator ( pattern )

node:
domain-defined-type-identifier

operator :
domain-defined-type-identifier

4.2.1 Lists
List patterns contain one or more space-separated patterns between < > brackets.
Assuming a domain that contains the node types A, B, X, Y and Z, the following
pattern denotes a three-element list, with the second element another list:

< A < X Y Z > B >

4.2.2 Expressions
Expressions are written in a functional notation: an operator, followed by one or
more comma-separated patterns (the operands) between ( ) brackets. Valid ex-
pression patterns are (assuming an appropriate domain that defines the operators
and the nodes):

IfOp(A, B, C) // Ternary expression

MergeOp(<A B C>, <D E F>) // Binary expr. with list operands

Add(Mult(B,C), Minus(D)) // Nested expression

There are infix shortcuts for unary and binary expressions:

ReverseOp <A B C>
<A, B, C> Add <D, E, F>
(B Mult C) Add (Minus D) // Parentheses force evaluation order

Parentheses ( ) can be used for grouping purposes in both lists and in ex-
pressions. In list contexts such a grouping is referred to as a sublist.
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4.2.3 Nodes and Operators

Nodes and Operators are both terminals of the Rule Language: types that are
extracted from the domain definition file. When in the examples in this chapter
node type identifiers such as A, B, or Statement are used, the presence of a domain
in which these nodes are defined is assumed — none of these identifiers are part
of the core Rule Language. The same applies to operators. Identifiers such as
Mult , Add and Minus are always examples of user-defined operator types.

For operators it should be kept in mind that any precedences that may be
present in the domain itself (e.g. a multiplication operator takes precedence over
an addition operator), are not reflected in the Rule Language, where all operators
have equal precedence and are matched left-to-right as they appear in the match
pattern. Rule Language operators are left-associative.

For example, a parser for a ‘calculator’ domain might transform the string:

A * B + C

into a domain tree T of the form:

+(∗(A,B), C)

When writing rules for such a domain, however, the rule pattern:

A MultOp B AddOp C

will be parsed as:

MultOp(A,AddOp(B,C))

and will therefore not match the domain tree T given above.
An appropriate evaluation order can always be forced using parentheses. A

pattern that does match the domain tree T is:

(A Mult B) Plus C

4.2.4 Wildcards

When a rule is applied, the matching mechanism will traverse the domain tree
until it fails or finds a part of the domain that conforms to the match pattern.
The root of this subtree is then replaced with a new subtree created according to
the specification in the action pattern of the rule.

The traversal of the matching mechanism starts at the root of the tree, and is
left-to-right, depth-first.

For example:
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rule R ;
begin
(X Mult Y) Plus (Z Mult Y)
→
(X Plus Z) Mult Y
end.

Rule R implements a parse tree simplification on (arithmetic) expressions,
using the distributive property. An occurrence of the match pattern is sought in
the domain tree and replaced by the subtree specified in the action pattern.

In support for more generic, node-independent structural rules, the Rule Lan-
guage supports the following wildcards constructs:

• For lists:

– ... (ellipsis). The ellipsis token is used to signify zero or more arbit-
rary elements within a list. If we have the domain tree:

<<A B C> <D E F> <G H I> F>

then the pattern:

<A B C>

will only match <A B C>,

<D ... >

will only match <D E F>, and:

<... F>

will match both <D E F> and the main list itself.

– * /+ (repeat constructs).
The repeat constructs ‘* ’ and ‘+’ are Rule Language postfix operators.
They can only be applied within the context of a list, to the list ele-
ments. The ‘* ’ matches zero or more occurrences of its argument, the
‘+’ matches one or more occurrences of its argument.

• For expressions:

– any , leaf , noleaf .
The keyword any used in an expression pattern (it can only be used as
an operand, not as an operator) matches an arbitrary expression (i.e.
of arbitrary depth and contents) in that position. The keyword leaf

only matches patterns consisting of a single node (but still of arbitrary
type) and the keyword noleaf complements this and matches anything
that is not a single node. If we have the following domain tree:

Mult(Mult(A, B), Mult(D, E))
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Then the pattern:

Mult(A, B)

will only match Mult(A, B) , and nothing else. The pattern:

Mult( leaf , leaf )

will match both Mult(A, B) , and Mult(D, E) ; the pattern:

Mult( any , any )

will match Mult(A, B) , Mult(D, E) , and also Mult(Mult(A, B),

Mult(D, E)) ; and finally the pattern:

Mult( noleaf , noleaf )

will match only Mult(Mult(A, B) , Mult(D, E)) .

• For nodes:

– Wildcard functionality for nodes is implicitly present in the domain
hierarchy as specified in the domain definition file.

– A domain designer can specify in the configuration file that A, B, and
C are node types derived from the node X. Patterns containing a ref-
erence to node X will match actual occurrences of either A or B or C.
In the context of the Vnus computer language domain, an example
would be the node type ControlStatement. This type can be used in
rules to match nodes of type IfStatement, WhileStatement as well as
RepeatStatement.

– The keyword object signifies a system-defined node wildcard that will
match every node type defined by the domain.

• For operators:

– Operators (like normal Nodes) can be derived from other operators in
the domain. Rules containing a reference to an operator ArithmeticOp
could match a number of nodes such as MultOp, MinusOp, etc., de-
pending on how the domain is defined.

– The keyword operator is an intrinsic wildcard that will match every
type derived from type Operator.

– Ellipses can be used in the operand list of expressions to signify an
arbitrary number of operands, e.g. ‘Op(A, ... ) ’, or even ‘Op( ... ) ’.
The other repeat wildcards (i.e. * and +) are not allowed in operator
argument lists.

All the wildcard nodes can only be used within match patterns, and are not
allowed inside action patterns, where they would be meaningless.
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4.3 Rule Variables
The Rule Language allows the rule-writer to attach names to arbitrary parts of the
matched structure. These names, or rule variables, can then later on be referred
and assigned to in the action pattern. This makes it possible to specify rules that
have more complex results than just replacing the entire matched sub-tree with
something else.

4.3.1 Initialising Rule Variables
Naming parts of the matched structure is done by assigning a name to the cor-
responding construct in the match pattern. It is customary, but not required, to
use all-caps rule variable names. The syntax is:

namedPattern:
pattern . rulevarName

ruleVarName:
identifier

This rule variable binding has a high precedence in the Rule Language. If a
rule variable name needs to be attached to e.g. an entire expression, grouping
parentheses should be used:

A Mult B . N

will cause N to refer to the matched node B, whereas:

(A Mult B) . N

will cause N to refer to the entire matched binary expression.
Rule variables must be unique identifiers that do not clash with any of the

domain’s keywords or with the Rule Language’s own reserved words — there is
no separate namespace for rule variables.

The following rule describes a more generic version of the expression simpli-
fication rule given earlier:

rule R ;
begin
(X Mult any. L1) Plus (X Mult any. L2)
→
X Mult ($L1 Plus $L2)
end.

The match pattern is still replaced by the action pattern, but that action
pattern now uses the rule variables L1 and L2, thereby reusing these parts of the
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matched structure. Rule variables are referenced by preceding the rule variable
name with a dollar sign.

Use of explicit rule variables is the only means by which parts of the matched
structure can be reused in the action pattern. In all other situations, the rule
execution mechanism will newly create the nodes that appear in the action pat-
tern. (For example: the operator nodes Mult and Plus as well as the node X in
the example above).

A rule variable can be used more than once in an action pattern, but there will
still be only one physical copy of the data structure it refers to. If this structure
is changed by a subsequently applied rule, that change will be seen everywhere.

4.3.2 Attributes
So far, nodes have been described as the atomic ‘leaves’ of the Rule Language.
However, when specifying a domain, the domain designer also has the possibility
to define, for each type of node, an arbitrary number of attributes associated with
that node. Each attribute has a name and a type. At the C++ implementation
level, these attributes correspond to named fields in a tuple or class type.

For example, consider a node called Cardinality. This node type might have
attributes Name (of type String) and Upperbound (of type Expression). The
match pattern:

Cardinality

will match all occurrences of Cardinality in the domain tree, but one of these
Cardinalities might have a Name attribute with the value i and an Upperbound
of 15, while another match might have the Name j and an Upperbound of 30.1

The rule system is configured to extract (from the domain configuration file)
attribute-specifying keywords for use within the Rule Language, just as it does
for the nodes themselves. Attributes are incorporated into a match pattern by
using the where-clause construct.

A match pattern where-clause consists of a number of where constructs, concat-
enated by boolean operators and and or or their equivalent ‘operator’-notations:
&& and || (these are all actual Rule Language operators, not user-defined ones),
and enclosed in where delimiters: two square [ ] brackets. In a where-clause two
basic actions can be described:

Retrieval of an attribute. An attribute’s value can be bound to a rule vari-
able. This is the second way of initialising a rule variable (the first was
associating a rule variable with a pattern using ‘. ’).

1Rule Language attributes are perhaps unfortunately named in that they are only partially
similar to the attributes known from the classic attribute grammars. In our context, attributes
are more like ‘named children’ that are fully part of the actual parse tree, than like constructs
separate from the actual parse tree — although Rule Language attributes certainly can be used
in such a fashion.
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node . N [ $R = SomeAttr and $S = OtherAttr ]

If this pattern matches, then $N, $R and $S all refer to parts of the matched
structure: $N to the actual node; $R and $S to two of its attributes. Attrib-
ute binding is only allowed in match pattern where-clauses. In the action
pattern rule variables can only be references or replaced.

Testing of an attribute. An attribute’s value can also be compared to the value
of a rule variable. This is only allowed in the match pattern where-clauses.
The comparison results in a boolean value. If false , this will cause the
rule to fail immediately. If true , the matching process for that rule will
continue. The syntax is that of C/C++ comparisons. Example:

FunctionDef [ $N = Name ] // rulevar binding

......

FunctionCall [ Identifier == $N ] // rulevar test

This rule will only succeed if the pattern matches and if the Identifier at-
tribute of the matched FunctionCall node is identical to the name of the
matched FunctionDef node.

Testing can be done between all combinations of rule variables and attributes.
Next to ==, the other standard relational operators (!= , <, <=, >=, >) are available.

The actual meaning of these operators is defined in the C++ code associated
with the entity. Thus, the example above is only legal if the type of the attribute
Identifier has a valid operator== defined for it.

The Rule Language system has built-in knowledge of two intrinsic node types
that occur particularly often in many domains. These are the types String and Int.
It is possible to compare rule variables or attributes directly to literal constants
of these types:

Cardinality [ Name == "i" && Upperbound == 4 ]

Rule variable testing makes it possible to create a final, completely generic
version of the simplification rule based on the distributive property for expressions:

rule R ;
begin
((any. A Mult any. L1) Plus (any. B Mult any. L2)) [ $A == $B ]
→
$A Mult ( $L1 Plus $L2 )
end.
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4.4 Subpatterns

So far we have discussed basic patterns made up of expressions, lists, and typed
nodes, possibly with attributes. Attributes to a node can themselves be of a node
type, but can also be structural, e.g. expressions or lists.

The Rule Language supports the specification of constructs that can descend
‘into’ matched attributes, lists and expressions, and search for the occurrences of
subpatterns at arbitrary levels.

These subpattern specifications take place inside where-clauses, and use the
matches and contains keywords:

The ‘matches’ Keyword

node [ Attr matches pattern ]

A matches clause is a construct that allows the rule writer to specify a sub-
pattern for matching against an attribute’s exact structure. For example:

This tree consists of a node A, which has an attribute D of type Expression
(there may be other children as well, but they are not shown in this picture).
This expression contains another instance of A with a different D-attribute. The
match pattern:

Add(F, G)

would match both occurrences of ‘F +G’ in this domain tree. But the pattern

A [ D matches Add(F, G) ]

only matches the second, bottom-most node A.
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The ‘contains’ Keyword

node [ Attr contains pattern ]

node [ contains pattern ]

The contains clause is used for a less restricted form of matching.
A contains clause associated with an attribute Attr to a node node matches if

node is found, and if the Attr attribute of that node contains the specified pattern
somewhere inside of it. In the previous example, for instance, the pattern:

A [ D contains Add(F, G) ]

will match three times: upper A and left F + G, upper A and right F + G,
and lower A and right F + G.

Any contains clauses associated only with a node will work in a similar way,
but will try to find the contains pattern in each of the attributes of matched
node A, as well as in node A itself.

Where-clauses (as described in Section 4.3.2) can be associated with any kind
of pattern, not just with nodes. The where-clause can be seen as a postfix op-
erator that applies to an entire pattern: where-clauses can be attached to lists
or expressions. In these cases the semantics of the where-clause apply to all the
elements of the list, or all the operands of the expression (i.e. the entire expression
or list is considered in the search).

There is one restriction: lists and expressions do not have attributes, so a
matches clause has no meaning here, and neither does a contains involving
explicit attributes. Thus we get the following:

<A, B, C, D> [ $R = XA ] // Meaningless, error

<A, B, C, D> [ contains (C Add X) . R ] // Ok

(X Mult Y) [ XA contains C ] // Meaningless, error

The where-clause, like the rule variable naming operator ‘. ’ binds strongly.
For example:

X Mult Y [ contains (A Add B) ]

is a valid pattern, which will search for ‘(A Add B)’ in Y only, not in X. Using
parenthesis to change the pattern to ‘(X Mult Y)’ would cause the search to take
place in the entire binary expression.

4.4.1 Sublists
Where-clauses can be attached to nodes, lists, and expressions. If a subexpression
is enclosed in parentheses, a rule variable or a where-clause can also be assigned
to this subexpression.

Similarly, a name or a where-clause can be attached to a sub-list:
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< X (Y * ) [ contains A ] Z >

......

< X (Y * ) . RV Z >

The placement of where-clauses relative to the parentheses is important and
can affect the meaning of a pattern:

< X (Y [ contains T ] )* Z >

< X (Y * ) [ contains T ] Z >

The first pattern matches zero or more successive Y nodes, each of which
contains a T. The second pattern matches zero or more successive Y nodes, at
least one of which contains a T.

4.4.2 Concatenated Where-clause Terms
Where-clause terms in match patterns can be used to construct boolean expres-
sions using the boolean Rule Language operators and , or and not .

If a where-clause expression evaluates to true , the pattern matches, if it eval-
uates to false it does not, and the rule fails. A where-clause consisting of a rule
variable binding returns true by default, rule variable/attribute testing returns
the result of the test, and contains /matches constructs return true or false based
on whether the pattern specified in them matches or not. The boolean operators
can be used with all these where-clause terms.

For example:

Cardinality [ $LWB = Lowerbound and $UPB = Upperbound ]

always matches (and allows the rule variables $LWBand $UPB to be used else-
where in the match pattern), but:

Cardinality [ $LWB = Lowerbound and $UPB = Upperbound
and $LWB == $UPB ]

only matches if the values of LWB and UPB are equal.

4.5 Action Patterns
Whereas the match pattern specifies the pattern to look for, the action pattern
specifies what should happen afterwards. A successful match supplies two items
that can be used in the subsequent action part:

• A collection of rule-variables that provide the ‘hooks’ into the matched struc-
ture. By referring to rule variables in the action pattern we can restructure
or modify these substructures, and create a new structure out of them.
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• The root of the matched structure, which is always bound to the internal
rule variable $top .

Next to these items derived directly from the match pattern, Nodes, Expres-
sions and Lists are the other constructs that can be used in an action pattern.

For example, the action pattern:

($X AddOp <A $B (C MultOp D)>)

leads to the construction of a structure consisting of a new expression, whose
left operand consists of a piece of the matched domain structure, whose operator
is a newly created AddOp node, and whose right hand side consists of a newly
created list with three elements: a new node A, another piece of the matched
structure (via rule variable $B), and a new expression containing the new nodes
C and D. This entire new structure then gets assigned to $top , so that it replaces
the matched structure, which subsequently becomes unreachable.

4.5.1 Where-clauses in Action Patterns
Where-clauses and attributes are also available for the creation of more complex
data structures. In an action pattern, retrieving or testing an attribute (as found
in a match pattern where-clause) makes no sense. Instead, where-clauses are used
to assign new structures to attributes:

Assignment to an attribute. An attribute’s value can be replaced by part of
the original tree, by means of previously matched rule variables. The syntax
is the counterpart of the retrieval syntax, and uses the standard way of
referring to a rule variable’s value. For example:

$CARD [ Name = $ID and Lowerbound = $EXPR ]

Assuming that $N had previously matched a node of type Cardinality, this
action pattern will cause the subtree starting at that node to be reused.
After the rule has finished, the attributes Name and Lowerbound will have
new values, but other attributes that were not explicitly mentioned in the
pattern (e.g. Upperbound or Stride) will have retained their previous values.

Some other example of action patterns:

($X Add <A B [ BAttr = $R and BAttr2 = N ] >)

This pattern assigns a value to two of the new B’s attributes: a part of the
matched tree to BAttr, and a freshly created node N to BAttr2.

($X Add <A B [ BAttr = (X Mult C) ] >)
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This is similar to the previous example, only now the attribute BAttr (which
has to be of type Expression) is assigned an entire, freshly created expres-
sion.

The boolean operators or and not have no meaning in action where-clauses.
Since there is no success or failure attached to an action pattern where-clause, we
only allow the and operator, which simply has the semantics of sequencing.

4.5.2 Rule Variable Usage
Every where-clause in a match pattern introduces a new context to which the
rule-variables defined in that where-clause are held to belong.

After definition, rule variables may be used anywhere in the match or action
pattern from that point on, with the exception of rule variables defined in or and
not clauses, which may not always have a value outside the immediate context in
which they were defined. Similarly, rule variables cannot be used as left-hand side
values in the action pattern unless the where-clause that holds the assignment
directly belongs to the same context in which the rule variable was originally
defined. For example:

<
AssignStatement . A [ contains Functioncall . F ]
IfStatement . I [ contains Functioncall . G ]

>
→
$I [ $F = $G ] // illegal assignment

The assignment to $F is not allowed because $F was defined within the context
of $A, not of $I .

A second application of the context rule is illustrated by the following example:

AssignStatement . A [ contains Cardinality . C ]
→
AssignStatement [ $C = ... ]

Here, the use of AssignStatement in the action pattern causes a new node to be
created. Since C was initialised within the context of the specific AssignStatement
node bound to A, the attempt at assignment within the new AssignStatement is
meaningless, (the new AssignStatement need not even contain a Cardinality), and
is therefore not allowed.

4.6 Embedded Code
The Rule Language as presented so far is not capable of describing every possible
transformation rule one would like to program. In particular, there are two places
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where a programmer might want to do more than is possible within the Rule
Language itself.

The conditions for failure or success in the match part of a rule might some-
times involve more than the simple equality testing supplied by the Rule Lan-
guage. One would really like a more generic condition function, a function that
can take the various attributes and rule variables as arguments, and which will
return failure or success depending upon arbitrarily complex tests performed on
these arguments.

For example:

IfStatement . I [ $COND= Cond ] and $COND evaluates to ‘true’
→
IfStatement . I [ Cond = Boolean [ Value = "true" ] ]

In this rule, the intention is to simplify an IfStatement by reducing its condition
to true , if possible. This is only legitimate if the expression tree referenced by
$CONDactually evaluates to true. Depending on the complexity of the expression
this may not always be possible to determine using Rule Language rules, or it
may simply be more efficient to have this calculated by more powerful symbolic
manipulation code.

In this example, the condition function would be the possibility to have $COND

examined by an external module of code.
Likewise, sometimes one will need to perform an action on a matched structure

that is more complex than just building a new piece of domain tree out of rule
variables and new nodes, and a construction function might be necessary.

In order to achieve maximal expression power for rules a mechanism has been
adapted for allowing the rule programmer to construct arbitrary condition and
construction functions for rules: the use of embedded code. Embedded code is
straight C++ code inserted into the rule, with full access to all rule variables and
to the domain tree.

Embedded code is specified by text delimited by curly { } brackets. Such
Embedded Code Blocks (or ECBs for short), like rule variable initialisations and
where-clauses, can be suffixed to any arbitrary pattern.

In the most extreme case we can envision a rule that consists entirely of
C++ code, plus a reference to the rule variable $top — the effect will be similar
to writing a direct C++ function that takes the root of the domain tree as an
argument.

In more sensible cases, the rule programmer will use the Rule Language as
much as possible and only ‘escape’ to embedded code if a condition or construction
function cannot be expressed within the language itself.

The Rule Language does not parse or execute embedded code itself. Therefore,
a rule containing embedded code must always be translated by a C++ compiler,
and the resulting object code linked back into the transformation system before
the rule can be executed. Before the embedded code is written out to C++, it
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does get preprocessed by a simple textual filter. This allows us to use rule variable
syntax in embedded code (e.g. references to $R) — the filters will replace them
with a valid C++ identifier.

The existence of this preprocessing filter allows the addition of a few non-
standard bells and whistles to the embedded code. In particular:

• In ECBs that occur within the match pattern, one can use the special short-
circuit keywords fire and fail . The keyword fire will cause the rule
to match immediately, and is very useful in order to avoid cascading if-
statements in case of complex tests. Similarly, fail causes the rule to fail
without any further testing. If the flow of control reaches the end of a
condition ECB without encountering an explicit fire or fail , the default
action is to fire the rule. An example match pattern with ECB:

Cardinality [ $UPB = Upperbound and $LWB = Lowerbound ]
{

if (::relative prime($LWB, $UPB) == true) fail ;
// if not: fire is implied

}

• Embedded code in match patterns can, but should never be written to
result in actual changes to the parse tree. Such side effects could cause the
matching phase to result in a changed tree even though the rule itself fails,
and thus complete subvert the higher-level semantics of the Rule Language.

It is also possible to create and instantiate new rule variables from within an
ECB, and then use these rule variables outside of the ECB, i.e. in the normal
Rule Language context. If this is done, then the rule programmer must declare
to the Rule Language system the type of this new rule variable.

Type declarations take the form of a single statement outside the rule body,
as follows:

rule rulename ;
type type1 type2 type3 ...
begin
match pattern
→
action pattern
end.

In addition to declaring the types, the rule variables themselves must also be
explicitly declared inside the ECB (this time for the C++ compiler’s sake). Lists
and Expressions never have to be mentioned in the type declaration — they are
always known to the system. Any other additional types that get used in ECBs,
even if they have nothing to do with nodes or attributes (e.g. using a method of
a class), must also be declared in the type declaration.
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4.7 Multiple Matches
We have described the process of finding and subsequently transforming one spe-
cific ‘match’, but in several of the given examples we have already encountered
patterns that could match several different parts of the domain tree. This sec-
tion concerns itself with the question of how choices between different matches
are made, and it explains special Rule Language constructs for influencing the
matching process.

If we take the domain tree:

(A Mult C) Add (B Mult C)

and the following rule:

( any ArithOp any ) . E
→
$E

then it is obvious that this rule will fire, since there are three possible matching
trees:

1. $E == A Mult C

2. $E == B Mult C

3. $E == (A Mult C) Add (B Mult C)

Whether just one, or a sequence of all three matches will be assigned to $E

is something that the programmer can specify in the rule itself, using a search
directive.

4.7.1 Search Directives
Rule Language rules can have one of three execution-directing keywords attached.
These keywords are placed directly after the begin keyword of the rule body, and
have the following meanings:

once . If there are multiple matches for this rule, then the rule will be executed
exactly once, for the first match encountered.

continuous . This keyword is short for continuous matching. If there are multiple
matches for this rule, then the rule will be executed for each of these matches,
in order. The effect is making one ‘sweep’ with the rule over the domain
tree.

reapplication . This keyword is short for exhaustive reapplication. It repeatedly
performs a continuous match, until the rule no longer matches at all.
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continuous is the default execution strategy for rules without an explicit
keyword.

If we have the following rule:

rule R ;
begin once
( any Add any ) . E [ contains (A Add (B Add C)) . SubE ]
→
$E [ $SubE = (B Add C) ]
end.

and the following domain tree (with two possible matches (for $SubE) in bold
type):

(A Add (A Add (B Add C)) ) Add (B Add (A Add (B Add C)) )

then the domain tree will be transformed into:

(A Add (B Add C)) Add (B Add (A Add B Add C))

The same rule, with continuous instead of once specified, will transform it
into:

(A Add (B Add C)) Add (B Add (B Add C))

Finally, if the rule were made reapplicative, it would restart the search after
this first sweep, find the match created as a result of the first sweep’s action
pattern, and transform the tree into:

(B Add C) Add (B Add (B Add C))

4.7.2 Infinite Loops
Continuous matching may cause a rule application to enter an infinite loop, be-
cause the action part of each rule application can change or rearrange the domain
tree in such a way that new matches keep appearing forever. For example:

A Op B
→
C Op (A Op B)

When applied continuously, this rule tries to create the ‘infinite’ tree ‘C Op
(C Op (C Op . . . (C Op (A Op B)) . . . ))’, and the match pattern will never stop
matching. As in all programming languages, the compiler cannot always detect
this, so it is up to the rule programmer to avoid rules like this.

In contrast, the rule:
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A Op B
→
A Op B

does not cause an infinite loop, because continuous matching always continues,
and never tries to match the $top of a previous match again. This rule (as well
as any other rule that leaves the parse tree unchanged) would, however, never
terminate if applied in reapplication mode.

4.7.3 Multiple Matching with ‘contains’
In the presence of contains clauses, the rules for multiple matches given in the
previous section are no longer sufficient. Without contains , each of the multiple
matches is guaranteed a separate $top node. With the contains , we can have
multiple matches within the same $top rooted structure. Consider for instance
the following tree:

(A Mult C1) Add (B Mult (C2 Add C3))

are really all just nodes ‘C’, indexed for identification purposes. Now consider
the following rule:

begin continuous
( any operator any ) . E [ contains C. SomeC ]
→
$E
end.

This rule will match 8 times, namely (in matching order):

E = (A Mult C1) Add (B Mult (C2 Add C3)) $SomeC= C1

E = (A Mult C1) Add (B Mult (C2 Add C3)) $SomeC= C2

E = (A Mult C1) Add (B Mult (C2 Add C3)) $SomeC= C3

E = (A Mult C1) $SomeC= C1

E = (B Mult (C2 Add C3)) $SomeC= C2

E = (B Mult (C2 Add C3)) $SomeC= C3

E = (C2 Add C3) $SomeC= C2

E = (C2 Add C3) $SomeC= C3

A possible semantics (and a corresponding implementation) of continuous
matching might first search the domain tree for all these possible matches (like
we did for constructing the above table), store these matches in some kind of data
structure somewhere, and then process the actions for each of these matches.

The given example clearly shows that this ‘snapshot-approach’ might not al-
ways be a very useful route to take, if taken literally : the very first action executed
by the example rule replaces the entire domain tree with the node E — how should
the remaining seven actions be executed if the tree no longer exists?
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The alternative used in the Rotan system is to fully execute rules one at a
time, and dynamically determine if there still is a ‘next’ rule or not. The actual
implementation issues involved here are complex, but guided by the following
considerations:

• The domain tree is searched node-left-right for matches.

• Each match can best be thought of as a specific combination of values in a
rule variable table, as was done above.

• If a rule uses a contains then the rule writer must realize that this rule
may match several times for the same upper rule variable (see also the
example given above). Traditionally, we associate each different match with
a different upper rule variable, so it may not be completely obvious that
with a contains we get different matches for one upper rule variable.

• If one rule uses several contains clauses, then every possible combination of
matches for these clauses gives a separate rule match, for as long as they still
exist. In these combination the leftmost sub-match is most significant, and
changes the slowest. Furthermore, if new matches are generated during the
matching process, those are actually seen as matches only if the search has
not yet progressed past that point. This is vital: a search never backtracks,
but always progresses. The size and form of what is still to be searched
may be changed by actions, and for that matter so may the size and form
of what has already been searched, but the search always ‘knows where it
is’, and progresses from there, left-first through the tree.

The ‘leftmost sub-match most significant’-rule given above applies to the
search through the pattern, not to the search through the domain tree.

As an example of that last rule, consider the match pattern:

any [ contains A and contains B ]

applied to the tree:

This pattern matches (in order):

A1 B1

A1 B2 (if A1 still exists as a match)
A2 B1 (if B1 still exists as a match)
A2 B2 (if B2 and A1 still exist as matches)

But if the pattern had been:
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any [ contains B and contains A ]

then the matches for B and A would have been:
A1 B1

A2 B1

A1 B2

A2 B2

in that order (i.e. with B as ‘most significant’).
We continue with the first match pattern. If, in processing the first match (A1

B1), B1 is replaced by:

we get the new matches:

A1 B3

A1 B4

A2 B3

A2 B4

and the match (A2 B1) vanishes. If the replacement, however, happens on the
third original match (A2 B1), the search will already have passed beyond A1, and
the total list of matches will become:

A1 B1

A1 B2

A2 B1

A2 B3

A2 B4

A2 B2

4.7.4 The Help Keyword
The optional help keyword allows a rule programmer to add a descriptive help
text to a rule. This text will be shown to the user by the Rotan system upon
request, or in diagnostic messages from the rule compiler.

The help keyword is placed before the begin of the rule-body, after the type

declaration (if any), and followed by a string inside " " quotes.

4.8 Drivers and Engines

4.8.1 Drivers
Several rules can be grouped together to form a driver. By design, a rule is a
unit that accomplishes a micro-task, a driver is a collection of rules that together
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perform a logical macro-task, though this logical hierarchy can of course not be
enforced by the rule language.

A driver accomplishes its task simply by sequentially executing all the rules
that belong to it. The order of these rules is by default the order in which they
are encountered in the program file, but this order can be changed by using the
prec keyword, followed by the names of the rules in the desired order.

Syntax:

driver drivername prec <rulenames >

4.8.2 Engines
Engines are exactly the same as drivers, except that they consist of a group of
drivers (an engine cannot contain rules directly). Each engine can again use the
prec keyword to specify the execution order.

Typically, an engine will accomplish one large task made up of several drivers.
Syntax:

engine enginename prec <drivernames >

4.8.3 World
The World is the highest level of hierarchy in the Rule Language. There is only
one world, and in it a collection of engines can be grouped together (and given
an order using prec ).

Syntax:

world prec <enginenames >

4.8.4 Rules
In the Rule Language implementation each rule specifies in its declaration line
what engine and what driver it belongs to, as in:

rule R from thisdriver in thatengine ;

What follows the in keyword is the driver name, what follows the from is the
engine name.

This scheme does allow us to distribute the rules arbitrarily over any number
of files. Whenever rule program files are loaded into the transformation system,
the system can easily determine for each rule what engine or driver it belongs to,
and execute it in the correct order.

All precedence statements must occur at the beginning of a rule file, but
if a project contains multiple rule files, each file can start with its own set of
precedence statements (which must still all be unique).
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4.8.5 Conclusion
As soon as the Rule Language has been instantiated to a specific domain, we
possess the tool to implement the third step of Section 3.4.1: create a collection
of rule-engines that together implement a specific transformation path on source
trees in the language described by the domain.

We will illustrate this in the next chapter with a case study applying to our
chosen area of data-parallel compilation, and create a Rotan compiler for the
intermediate language Vnus.





Chapter 5
A Rotan Compiler for Vnus

5.1 The Vnus Language
The Vnus language was created at the Delft University of Technology to serve as
an intermediate language that would adequately be able to represent data-parallel
languages during the compilation phase [Dec98]. It is an architecture-independent
language that is easy to parse and primarily intended for machine-consumption,
but also has high-level semantics that allow a convenient mapping from various
abstractions found in parallel programming languages, such as loops, procedures
and functions, communication primitives, and other explicitly parallel constructs.

Vnus also has low-level semantics that allow a formal calculus of transforma-
tions to be defined in support of the various compilation and optimisation phased.
This calculus, called V-cal (also described in [Dec98]) allows us to reason about
transformations and supply proofs for semantical equivalence of ‘before’ and ‘after’
trees.

The following is an example of a simple, implicitly parallel (see Section 5.2)
Vnus program that initialises four differently-distributed vector arrays, and then
calculates the result vector A = B + C + D:

program

declarations [
globalvariable A shape [1000000] [block] int,
globalvariable B shape [1000000] [block] int,
globalvariable C shape [1000000] [cyclic] int,
globalvariable D shape [1000000] [blockcyclic 4] int,

cardinalityvariable i,
cardinalityvariable j,

]

statements [

61
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pragma [independent] forall [j: 1000000] statements [
assign (A, [j]) j,
assign (B, [j]) (10, +, j),
assign (C, [j]) (100, +, j),
assign (D, [j]) (1000, +, j)

],

pragma [independent] forall [i: 1000000] statements [
assign (A, [i]) (((B, [i]), +, (C, [i])), +, (D, [i]))

],

]

This example illustrates a number of the language constructs that make Vnus
so suitable as an intermediate format for (data-)parallel programs.

• The shape keyword, which Vnus uses to declare array-like data structures.

• The block , cyclic , and blockcyclic keywords signify an explicit data-
parallel distribution specification to be applied to the global arrays A–D (or
shapes A–D, in Vnus’ terminology).

• The cardinalityvariable keyword signifies that the variable declared
that way will be local to a single loop in the program only, and will never
have a negative value. Having a special declaration for these variables (that
are typically used as array-indices) can aid the compiler in subsequent data-
flow analysis.

• The pragma is the Vnus version of annotations, or meta-information at-
tached to certain constructs in a program (declarations, statements, and
expressions can all be annotated). Vnus pragmas are typically directly
passed on from annotations specified by the programmer in the higher-level
source code (e.g. HPF directives), but can also be the result of analysis
performed by the compiler itself.1

• The independent pragma indicates that the loop construct it annotates
has no data-dependencies between individual iterations of the loop. These
iterations can therefore safely be executed in parallel. Ideally, the compiler
would itself be able to deduce when a loop has the ‘independent’ property
(certainly in the case of the simple loops used in the example), but this is not
always possible, whereas it often is immediately obvious to the programmer
who wrote the loop.

• The forall keyword indicates that the body of the loop is to be executed for
every element in its iteration space (parameterised by the value of the car-
dinality variable), with the individual state changes caused by the iterations

1In fact, the Rotan Vnus compiler extensively uses internal pragmas to store analysis results
obtained during the compilation process.
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merged afterwards into a new program state. Changes made to the program
state by one iteration will not affect the input state of any other iteration,
but if two iterations were to write to the same variable, its final, post-merge
value will be unspecified after the forall is finished.2 The forall is one
of the most interesting constructs in Vnus, as its semantics explicitly allow
us to map a number of similar loop constructs found in higher-level paral-
lel programming languages to it (for a more detailed discussion about the
subject, see [Dec97a]).

There are also many explicitly parallel language constructs in Vnus that we
will encounter when we look at the code that the compiler will generate for pro-
grams such as the above. These constructs include:

primitives such as for element-wise sending of data,

• The forkall statement for spanning a program-wide loop that iterates over
the processor array.

• The send and receive primitives for the element-wise communication of
data between processors.

• The blocksend and blockreceive primitives for the communication of
aggregated data between processors.

• The owner , sender and isowner primitives that provide information de-
rived from the distribution of data elements.

• The barrier synchronisation statement that pauses execution until all pro-
cessors have reached the same execution point.

For a more comprehensive explanation of the syntax and semantics of Vnus,
we refer the reader to [Ree00b], the Vnus Language Specification. For ease of
reference the full grammar for the Vnus language is reproduced in Appendix B.

5.2 Global Design of the Compiler
The combination of a set of transformation rules on a domain, implemented in
the Rule Language as described in Chapter 4, and the Rotan compilation system
described in Chapter 3 can be used to create a specific instance of a compiler or
optimiser for that domain.

In this chapter, we will show how Rotan can be used to build a parallelising,
optimising compiler for Vnus. Figure 5.1 depicts the components of this system
and their interactions.

2An independent pragma can of course be used to explicitly assure the compiler that no
such write-dependencies exist between iterations.
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Vnus program

Rule Compiler

Explicitly Parallel Vnus
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Figure 5.1: The Vnus Compilation System.

As mentioned in the previous section, Vnus is a rich intermediate language,
with a wide range of available constructs and idioms. We distinguish three sep-
arate categories of possible Vnus programs:

Sequential programs. These do not use any of the parallelism-specific con-
structs.

Implicitly parallel programs. Here the data structures and statements are an-
notated with distribution information in the form of pragmas.

Explicitly parallel programs. These use the communication and synchronisa-
tion primitives present in the Vnus language.

The compiler described in this chapter will use implicitly parallel Vnus pro-
grams as its input. Explicitly parallel Vnus programs are its output format.

Before any rules can be written, a Rotan domain definition for Vnus must be
created, as explained in Section 3.4.2. For further reference, this complete domain
definition is reproduced in AppendixC.
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5.2.1 Sequential Compilation
An implicitly parallel Vnus program can be reduced to a sequential one by dis-
carding all the distribution information (i.e. ignoring the pragmas). Presence or
absence of such information will, by definition, not change the semantics of the
program. It is therefore possible to create a sequential executable for any impli-
citly parallel Vnus program by following the compilation sequence as outlined in
the left half of Figure 5.1.

A source program is fed directly to the Vnus backend (which exists separately
from the Rotan system itself), which discards the distribution information, and
performs a translation of the resulting sequential Vnus program to sequential
C++. This C++ program is further processed by a conventional C++ compiler,
and linked against a custom runtime support library.

5.2.2 Parallel Compilation
The Vnus-instantiated Rule Compiler is used to transform an implicitly parallel
Vnus program into an explicitly parallel Vnus program in SPMD format. The
Vnus backend again takes care of a translation from SPMD Vnus to SPMD
C++, that is: it generates C++ code which uses calls to explicit communications
and synchronisation routines corresponding to the explicitly parallel primitives
found in Vnus. The C++ code is compiled by a conventional C++ compiler, and
linked against the runtime support library and a communications library such as
PVM [Gei94], MPI [Sni96], or possibly a custom, platform-specific library. The
resulting ‘node executable’ will then be ready to run on the parallel architecture
in question.

There is a large degree of freedom available to the Rule Compiler. Different
transformation schemes can lead to different parallel programs that are all se-
mantically equivalent (i.e. they lead to identical output), but that have varying
amounts of efficiency and exploited parallelism. There is not one single ‘correct’
parallelisation of a Vnus program, but there will be translations that are better
than others, in terms of optimising for a specific evaluation criteria.

There are different metrics one could be interested in optimising for, e.g.
memory usage. For the purposes of this thesis, however, there is only a single
evaluation function of interest: we wish to minimise the execution time of the
program. In the remainder of this chapter we will describe the transformations
chosen to achieve that effect in the Rotan Vnus compiler.

The implementation of a complete, production-strength compiler for Vnus is
out of the scope of this thesis. Our interest is in creating a proof-of-concept
compiler that can be used to test the concept of a Rotan-based compiler. The
compiler must still be strong enough to handle more than toy problems. With this
in mind we state the following design constraints for the Rotan Vnus compiler:

• The compiler should correctly translate a substantial range of Vnus pro-
grams.
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• Further restrictions on the set of supported Vnus programs are allowed,
provided that it is possible to write a semantically equivalent Vnus program
that is supported. It is not interesting to have to program rules for handling
corner cases or sugaring constructs that can be easily rephrased by the
programmer.

The Rotan Vnus compiler implementation consists of two major transforma-
tion phases: a parallelisation phase and an optimisation phase. Each phase con-
sists of a number of engines, each engine being made up of a number of drivers,
each driver consisting of a number of individual rules. Engines, drivers and rules
are always applied in a specified order.

In the remainder of this chapter we will examine the transformation sequences
in more detail.

5.3 The Parallelisation Phase
The parallelisation phase consists of seven engines, divided over two sub-phases:

• Normalisation and Analysis

In this sub-phase, the engines and drivers transform the input program into
a version that remains functionally equivalent, but with certain language
constructs replaced by others. The goal of this engine is to decrease the
syntactical variety of input programs that will be offered to the subsequent
parallelisation engines. This allows both the number and the complexity of
these rules to be kept down, even though the compiler will still be able to
handle a wide range of Vnus programs.

The Normalisation and Analysis sub-phase consists of the following engines:

1. Preliminary normalisation

2. Function-to-procedure conversion

3. Global variable removal

4. Shape analysis

• Parallelisation

In this sub-phase the actual transformation from a sequential, implicitly
parallel Vnus program to an explicitly parallel Vnus program takes place.
The resulting SPMD program will be based on element-wise communication,
and therefore as yet be highly inefficient. This will be remedied in the
Optimisation sub-phase.

The Parallelisation sub-phase consists of the following engines:

1. SPMD insertion
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2. Temporaries insertion

3. Owner test insertion

We will further describe the entire parallelisation phase by focusing on each
of the seven engines in turn, showing examples of the transformations they im-
plement as well as examples of the rules themselves.

5.3.1 Preliminary Normalisation
This is a catch-all engine for a number of smaller normalisation rules that bring
the program into a more consistent, manageable form. After this engine has
processed a Vnus program, the following postconditions will hold:

• The program contains no variables that are initialised upon definition. All
such initialisations are now expressed as explicit assignments to that variable
in the corresponding scope code block. This reduces the number of cases
subsequent rules need to take into account.

For example:

declarations [
globalvariable x long 666

]

statements [
...

]

becomes:

declarations [
globalvariable x long

]

statements [
assign x 666,
...

]

• All the code present in the main body of the program is moved to a new
procedure with a fixed name. The remaining main body only consists of
a single call to this procedure. Subsequent transformations can now all be
written as rules applying to procedure definitions and declarations.

A typical example of a rule used in this engine (the token && is an alternative
notation for and ):

RULE pre2 FROM pre IN PreliminaryRules
HELP "Convert main body global variable initializers to explicit assignments"

BEGIN

Vnusprog.P
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[
Declarations CONTAINS DeclGlobalVariable.G
[

NOT (Init MATCHES ExprNull) &&
$INIT = Init &&
$ID = Name

]
&&
Statements
[

Statements MATCHES
<

(...).XX
(Statement [ NOT CONTAINS FlagPragma [Name == "skipthis"] ]*).SS

>.STATEMENTS
]

]
->
Vnusprog.P
[

$G = DeclGlobalVariable.G [ Init = ExprNull ]
&&
$STATEMENTS =
<

$XX
SmtAssign
[

Lhs = LocName [ Name = $IDCLONE ] &&
Rhs = $INIT &&
Pragmas = < FlagPragma [ Name = "skipthis" ] >

]
$SS

>
]
{

// Embedded C++ code
$IDCLONE = (String *)$ID->Clone();

}

END.

The use of the skipthis Boolean flag pragma is a typical construct that returns
in many rules. By adding this pragma to a matched and processed node, we
ensure that the same node (in this example, the Statement node SS) will not
match a second time. In this manner we can force the rule to iterate exactly once
over all the statements in a list.

Since almost every node in a Vnus program can have a pragma attached, and
pragmas are entirely user-defined, pragma lists are a convenient place to use for
storing information resulting from analyses rules, or (as seen above) to just serve
as a scratch area where temporary or meta-results can be kept by rules to use in
coordinating their effects or steering their own traversal of the input tree.

5.3.2 Function-to-procedure Conversion
In Vnus both function and procedure calls are allowed. For most of the transform-
ations relevant to this thesis, the distinction between the two is not important, in
which case the word routine will be used to describe either or both.
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Routines can either be linked to from an external library, or defined in the Vnus
program itself. Routines are parameterised, can be recursive, and can contain
references to global variables, but have no further side effects; all state changes
take place through the routine’s parameters or through changes to the global
variables.

The translation of functions and procedures will be in large part similar. In
order to avoid having to write a near-duplicate for every rule that performs an
action on a procedure, we first execute a conversion engine in which all functions
are rewritten to procedures.

For example:

formalvariable a FacRec long,

function FacRec [a] long statements FacRec [
if (a, =, 0l) statements [

return 1l
] statements [

return (a, *, functioncall FacRec [(a,-,1l)])
]

],

... functioncall FacRec [42] ...

becomes:

formalvariable a FacRec long,
formalvariable retFacRec FacRec pointer long,
localvariable fcres_1 scope_1 long,

procedure FacRec [a, retFacRec] statements FacRec [
if (a, =, 0l) statements [

assign *retFacRec 1l,
return

] statements scope_1 [
procedurecall FacRec [(a, -, 1l), &fcres_1],
assign *retFacRec (a, *, fcres_1),
return

]
],

localvariable fcres_2 scope_0 long,

procedurecall FacRec [42, &fcres_2],

... fcres_2 ...

Converting functions to procedures is a two-stage process:

• All function definitions are rewritten as equivalent procedure definitions.
This is done by converting the return variable of the function to an addi-
tional parameter3, which retains the same distribution as the original return
variable. The return statement is replaced by an assignment to the new
parameter, and the function declaration is replaced by a procedure declar-
ation. The body of the function can be copied across mostly unchanged.

3This is implemented using a pointer, as all parameter passing in Vnus is by value.
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• All function calls, both in the main body as well as in the routine bodies
themselves, are transformed into equivalent procedure calls. Function calls
are allowed in the right hand side of assignment statements and in the
expressions that form the arguments to other routine calls. In both cases
the treatment is the same: a new temporary variable is introduced, with
the same distribution as the original function’s return variable. A call to
the procedure created in the first step of this engine is added in front of
the statement in which the original function call appeared (with the new
temporary in the place of the ‘return parameter’), and the original function
call is replaced by a reference to the temporary variable.

The above approach will lead to correct code in all the ‘difficult’ cases: multiple
calls in one expression, nested calls, even recursive calls in the function body itself.
Some care has to be taken concerning the order in which the procedure calls are
added, however.

In the case of functions and procedures, we could have considered functions
to be a non-essential ‘convenience’ construct in Vnus, and saved effort by simply
restricting our set of acceptable Vnus programs to those using procedures only,
effectively leaving the conversion up to the original programmer. However, this
would be too restrictive, particularly since the transformation process in this case
is a tedious task for humans to perform, but fairly straightforward to automate.
The function-converting rules in question also present a good example of the
expressive power of the Rule Language.

Like most of the other components of the Vnus paralleliser, the function-
to-procedure engine focuses on equivalence rather than efficiency. We have not
considered it worth the effort to implement certain obvious, well-known optimi-
sations in this engine, such as the merging of the duplicate temporaries that will
be the result for handling cases like e.g. f(x) + f(x).

Although after this engine has been applied we are now guaranteed that all our
routines are in fact procedures, we will continue to use the word routine wherever
the text applies with equal strength to functions as well as to procedures.

The following is a typical example of a rule in this engine:

RULE ftp5 FROM ftp IN FunctionsToProcedures
HELP "Convert all uses of function types in declarations to procedure types"

BEGIN

Vnusprog.P
[

Declarations CONTAINS RoutineType.RT
[

MATCHES TypeFunction
[

$RETURN = Rettype
] &&
Formals MATCHES < (...).PT >

]
]
->
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Vnusprog.P
[

$RT = TypeProcedure
[

Formals = < $PT TypePointer [ Elmtype = $RETURN ] >
]

]
END.

5.3.3 Global Variable Removal
Sequential Vnus allows references to global variables from within routine bodies.
A characteristic of SPMD code is that global variables are not possible, as there is
no shared memory space. All usage of such variables must therefore be replaced
by an equivalent scheme that uses only local variables and routine parameters.

This engine performs the following steps:

• All global variable declarations are converted into field declarations within
a single new global record, called the common block.

• The common block is added as an extra parameter to every single routine
definition and routine call in the program (with the exception of external
routines, which are guaranteed not to refer to global variables to begin with).

• All references to global variables are replaced by references to fields within
the common block.

After this engine has finished, we are guaranteed that (a) the program now
only contains a single global variable (the common block), and (b) none of the
program’s routine code blocks contains any references to global variables any
more (the common block is passed as a parameter to every routine). The only
reference left to a global variable is the single procedure call in the main body of
the program, where the common block is first ‘inserted’ into the routine call chain.
This single global variable occurrence can now be handled by a small number of
special-purpose rules in the parallelisation sub-phase.

The following rule from the engine illustrates the use of list manipulation in
the Rule Language, and the ability to escape to C++ for functionality not provided
by the Rule Language, in this case for the administrative task of creating a unique
identifier.

RULE cbp3 FROM cbp IN CommonBlockPropagation
HELP "Add a common block parameter to all procedure declarations"

BEGIN

Vnusprog.P
[

Declarations CONTAINS BlockRoutineDeclaration.BD
[

Status != "done" &&
Parms MATCHES < (...).FORMALS >.FP &&
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Body MATCHES Block [ $SCOPE = Scope ] &&
$PROCNAME = Name

]
&&
Declarations MATCHES < (...).DECLARATIONS >
&&
Declarations CONTAINS DeclGlobalVariable.G
[

CONTAINS FlagPragma [ Name == "isCommonBlockPtr" ] &&
$TYPE = T

]
]
->
Vnusprog.P
[

$BD = BlockRoutineDeclaration.BD [ Status = "done" ] &&
Declarations =
<

$DECLARATIONS
DeclFormalVariable
[

Scope = $SCOPE &&
T = $TYPE &&
Name = $ID

]
>
&&
$FP = < $FORMALS $ID >

]
{

// Embedded C++ code
$ID = new String(idGenerator->Unique("cb_"));

if (*$SCOPE == "no scopename")
{

*$SCOPE = new String(idGenerator->Unique("scope_"));
}

}

END.

5.3.4 Shape Analysis

In this sub-phase, the program tree is traversed by rules that collect information
about the program and store it in a format and a location (pragma lists are again
used for this) that subsequent rules can easily use.

This engine gathers information about the distribution, size, and type of the
arrays used in the program, stores this in a custom ShapeLocationPragma, and
attaches a reference to this pragma to every occurrence of the shape in question.

In essence, this engine parses the Vnus declarations, and constructs a symbol
table for the shape identifiers.

This engine is not the only place where analysis occurs during the compilation
trail. As the program subsequently passes through other engines, there will be
further, mostly local and rule-specific, analyses that need to be done. However, the
tree decoration that results from the shape analysis engine is used by practically
every other subsequent rule in the compiler.
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As an example of the effect of this engine:
globalvariable A shape [20] [block] int,

...
assign (A, [0]) 666

becomes:
globalvariable A shape [20] [block] int,

...
assign (pragma [shapeloc id=A basetype=int dist=block(0)] A, [0]) 666,

And an example of one of the central rules in this engine is the following:
RULE slp03 FROM slp IN ShapeLocationPragmify
HELP "Attach a ShapeLocationPragma to all uses of global shapes in expressions."

BEGIN

Vnusprog.P
[

Declarations CONTAINS ShapeLocationPragma.SLP
[

$ID = Shape
]
&&
Declarations CONTAINS BlockRoutineDeclaration
[

Body CONTAINS ExprName.EN
[

Name == $ID &&
Pragmas MATCHES < (...).PRLIST > &&
NOT Pragmas CONTAINS ShapeLocationPragma

]
]

]
->
Vnusprog.P
[

$EN = ExprName.EN
[

Pragmas =
<

$SLP
$PRLIST

>
]

]

END.

Note that as the default application mode of this rule is ‘continuous’, a single
application of this rule will result in all references to all global shapes in a program
being tagged.

5.3.5 SPMD Insertion
Vnus provides the forkall iteration construct as a means of specifying that a
program is SPMD. Its syntax resembles that of the conventional for statement,
but there are a number of restrictions and the semantics are quite different.
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Like the for statement, the forkall specifies a cardinality variable with an
associated iteration space. The first restriction is that a forkall can only specify
one single cardinality variable (usually called p). The second restriction is that
p always iterates over the range 0..nrOfProcessors, where nrOfProcessors is an
externally linked variable whose value is system-dependent. The third restriction
is that there may occur only one forkall in a Vnus program, and that it must be
the outermost construct in the main body of the program.

The semantics of the forkall in this form are simple: the forkall signifies that
the program is an SPMD program: nrOfProcessors identical processes will be
started, each process executing the body of the forkall, and therefore paramet-
erised in p, the process number.

The following example shows how the forkall is introduced and the processor
parameter p is installed into the common block (the declaration of which has been
expanded to accommodate it by one of the earlier rules in the engine):

statements [
assign commonBlockPtr1 &commonBlock1,
procedurecall rc_main2 [commonBlockPtr1]

]

becomes:

externalvariable numberOfProcessors int,
cardinalityvariable procnr1

statements [
forkall [procnr1:numberOfProcessors] statements forkall_scope [

assign field commonBlock1 _p procnr1,
assign commonBlockPtr1 &commonBlock1,
procedurecall rc_main2 [commonBlockPtr1]

]
]

Introducing SPMD is the first step towards converting an implicitly parallel
program into an explicitly parallel one. It is necessary, but not sufficient, to en-
capsulate the program’s main body by a newly created forkall construct. Care
must also be taken to convert all the remaining global variables (of which there is
only one at this point, thanks to our common block engine) occurring in the pro-
gram into local variables. In an explicitly parallel SPMD context, global variables
are not allowed: every process only has its own memory space, and all sharing is
done by message-passing.

Our approach towards localising shape A is simple: we give every process a
private copy of A, even if A is a distributed shape (in which case the distribution
info is also copied). For distributed shapes it is a conventional and elegant ap-
proach to perform shrinking, and provide each process not with the entire shape
A but with a derived local shape A(p), containing only those elements of A which
will actually reside with process p. In the program code itself all index expres-
sions into A would then have to be encapsulated in global-to-local function calls.
While this transformation may have some effect on the actual performance of
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the resulting code (e.g. by avoiding cache or other memory-related slow-downs
for large arrays), these effects would be small for the majority of examples used
throughout this thesis. We have therefore decided not to implement shrinking in
our Vnus Rotan compiler.

5.3.6 Temporaries Insertion
The basic communication scheme the Rotan Vnus compiler implements when
parallelising has been described in Section 2.4.2.

Communication insertion forms the heart of the Vnus compiler. For each
processor, all non-local data that is needed by the computations must be retrieved
from or sent to other processes, while maintaining program correctness.

With respect to the communication primitives this scheme uses the non-
blocking sends and blocking receives supported by Vnus. As far as computations
are concerned, the owner-computes rule is used.

In the case of a data element having more than one owner (as is the case
for replicated shapes), all owners will execute the necessary code to keep their
copy of the element current, but we assume that only (and exactly) one of these
owners is designated the Sender, responsible for corresponding the element’s value
to other processes. The sender is chosen according to some sender-determination
function. In advanced implementations, the sender-determination function can,
for instance, be based on the topology of the network. In our case we settle for
a simpler choice, choosing index 0 in every replicated dimension. Thus, process 0
itself is always responsible for all totally replicated data. We have also assigned
it the task of performing I/O and other interfacing with the outside world that
should not be performed by all processes.

In Vnus, all assignments only involve scalars. With this in mind, we introduce
a scheme based on scalar or element-wise communication. Aggregating these
element-wise sends and receives into block sends and block receives for better
performance is a task left to one of the optimisation engines, although in the
current phase we will also take care of some elementary data analysis in order to
pave the way.

Each assignment statement is split into a number of communication assign-
ments followed by one computation assignment. For each data element referenced
in the right hand side of the original statement, a local temporary scalar variable
is introduced, which is assigned to in the communication assignment. The com-
putation assignment can subsequently be executed completely locally (because
owner computes hold, the result of the computation is always local as well).

Creating temporaries also needs to be done for other ‘right hand side’ con-
texts, such as condition expressions for if and while statements, and the actual
arguments of routine calls.

Assignment statements where the right-hand side consists of a single non-
local data element, however, are not affected, but are marked straight away as
communication assignments.
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For example:

assign (A, [i]) (((B, [i]), +, (C, [i])), +, (D, [i]))

becomes:

pragma [communication] assign tmp_it1_0 (B, [i]),
pragma [communication] assign tmp_it1_1 (C, [i]),
pragma [communication] assign tmp_it1_2 (D, [i]),
pragma [computation]

assign (A, [i]) ((tmp_it1_0, +, tmp_it1_1), +, tmp_it1_2)

5.3.7 Owner Test Insertion
This engine implements the final steps in the introduction of the communication
scheme: rewriting both the communication assignments and the computation
assignments to explicitly parallel versions.

Computation assignments need to be encapsulated by an owner-test, so that
the owner-computes rule is are actually implemented. Computation assignments
need only be performed by the owner(s) of the element referenced in the left hand
side of the statement.

Communication assignments are expanded into send/receive pairs. The ele-
ment is sent only if p is the Sender for that element, the element is received by
each p that is an owner for the left hand side in question.4

As mentioned before, this communication scheme is extremely inefficient, not
only because of the element-wise sending, but also because we do not avoid same-
processor (or send-to-self) communications, which would happen if the source and
destination processors for a data element for a processor turn out to be one and
the same.

While send-to-self elimination rules could be implemented in the rule language,
we chose not to do so because it is already automatically taken care of at a lower
level by the runtime communication libraries. This has the added advantage of
being a run-time solution that also works in those cases where it is not possible to
determine at compile time whether a communication would be a send-to-self or
not. A disadvantage, however, is that the communication calls are still generated,
and can in certain cases lead to so much overhead (even though no communication
will actually take place) that it negatively affects the performance of the program.
And example of this will be seen in Section 6.3.2.

The following example shows how communication and computation statements
are handled by the owner test insertion engine:

pragma [communication] assign tmp_it1_2 (D, [i]),
pragma [computation]

assign (A, [i]) ((tmp_it1_0, +, tmp_it1_1), +, tmp_it1_2)

becomes:
4A send command can have multiple destinations encoded in the processor number.
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if (sender (D, [i]), =, field *cb_1 _p) statements [
if (owner tmp_it1_2, <>, field *cb_1 _p) statements [

send owner tmp_it1_2 (D, [i])
] statements []

] statements [],
if isowner tmp_it1_2 field *cb_1 _p statements [

if (sender (D, [i]), <>, field *cb_1 _p) statements [
receive sender (D, [i]) tmp_it1_2

] statements [
assign tmp_it1_2 (D, [i])

]
] statements [],
waitpending,
if isowner (A, [i]) field *cb_1 _p statements [

assign (A, [i]) ((tmp_it1_0, +, tmp_it1_1), +, tmp_it1_2)
] statements []

The expression field *cb_1 _p retrieves the processor number from the
‘common block’ record where it was stored previously.

5.4 The Optimisation Phase
Currently, the optimisation phase consists of three engines each implementing a
different, efficiency-improving transformation on the original program.

They were chosen because they illustrate a wide spectrum of possible trans-
formations that can be implemented using the Rule Language, and because to-
gether they are already sufficient to generate parallel programs that run very
efficiently (as we will describe in detail in Chapter 6).

The three engines are:

• Communication Aggregation

• Owner Test Absorption

• Owner Test Inlining

We will describe the three optimisations in more detail.

5.4.1 Communication Aggregation
Communication aggregation is an optimisation that searches the input program
for occurrences of element-wise communication in a loop context. It then replaces
this communication by code which uses a similar loop to fill a local memory buffer
instead. This entire buffer of values is then communicated at once by a so-called
blocksend command.

This engine consists of the following sub-engines:

Recognition and lifting. Identifies and tags the loops that this engine can be
applied to, and if necessary splits the loop so that code that is not involved
(e.g. computations) will remain separate.
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Scalar expansion. Recognises and converts uses of scalar temporaries into uses
of array elements. The array in question is a newly created local buffer.

Aggregation. Inserts the aggregation template into the code tree, taking care
of sending from and receiving into the local buffer.

Cleanup. Ensures that new cardinality variables (e.g. introduced when loops
were cloned during the lifting phase) are indeed unique, as required by
Vnus.

As an example, the large rule that implements the aggregation sub-engine is
listed in its entirety in Appendix D.

5.4.2 Owner Test Absorption
Because of the owner-computes rule and because of the fact that only the owner
of a data element is responsible for communicating its value to other processors,
it follows that in an unoptimised Vnus program, loop/if constructs similar to the
following will occur many times in many different forms:

foreach [i:n] statements [
if isowner (A, [i]) field *cb_7 _p statements [

assign (A, [i]) 666
] statements []

],

For large n, these runtime element-wise tests on ownership rapidly become
prohibitively expensive. If the distribution of the shape is known, however, it
has been shown in [Ree96] that in many cases the exact range of values that the
index i assumes can be statically generated rather than dynamically tested during
runtime.

The owner absorption engine implements this conversion, and will transform
the above example — assuming a block distribution for shape A — into:

procedurecall vnus_blus [getblocksize A 0, numberOfProcessors, 1, 0, n,
&blus_n_u00, &blus_j0_low0, field *cb_7 _p],

foreach [u10:blus_n_u00] statements [
assign (A, [((1, *, u10), +, blus_j0_low0)]) 666

],

The utility routine vnus blus calculates the appropriate upperbound and offset
(blus n u00 resp. blus j0 low0 ) for a loop that defines the exact elements of A
being accessed. There are similar routines (and accompanying rules) for shapes
that have cyclic or block-cyclic distribution.

5.4.3 Owner Test Inlining
In any explicitly parallel Vnus program, there will be many calls to the Owner,
Sender, and IsOwner primitives. These will be translated by the Vnus backend
into calls to utility functions, which can again be very expensive.
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It is therefore preferable to use these primitives as little as possible. The
Owner Test Inlining engine is a collection of small rules that search the input
tree for occurrences of these primitives, and replace them (based on the known
distributions of the shapes they apply to) with actual expressions (or in some
cases, even constants).

The following rule is a typical example of the rules in this engine:

RULE io22 FROM io IN InlineOwners
HELP "Inline all Owner calls for cyclic distributed 1d shapes"

BEGIN CONT

Vnusprog.P
[

CONTAINS ExprOwner.E
[

Shape MATCHES LocSelection
[

$SHAPE = Shape &&
Shape CONTAINS String.NAME &&
Indices MATCHES < Expression.EXPR ... >

] &&
CONTAINS ShapeLocationPragma
[

Shape == $NAME && Dist MATCHES DistCyclic && Distdim == "0"
]

]
]
->
Vnusprog.P
[

$E = ExprBinop
[

Optor = OpMod &&
Operanda = $EXPR &&
Operandb = ExprName [ Name = "numberOfProcessors" ]

]
]

END.

This rule will have the effect of changing code such as the following (assuming
a cyclic distribution for shape B):

if isowner (B, [i]) field *cb_13 _p statements [
assign (B, [i]) 666

] statements []

into:

if ((i, mod, numberOfProcessors), =, field *cb_13 _p) statements [
assign (B, [i]) 666

] statements []

5.4.4 Conclusion
With the optimisation engines we complete the third step of Section 3.4.1 and
have used the Rotan system to created a dedicated Vnus compiler/optimiser that
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can be used in batch mode to transform source code. What now remains is the
investigation of the results of this exercise, both in terms of quality of the produced
code, and as an evaluation of the overall usability of the Rotan system, which we
will devote the final two chapters of this thesis to.



Chapter 6
Experimental Results

In Chapter 3 we introduced the core Rotan system, and in Chapter 4 we described
the Rule Language that is used to instantiate a Rotan compiler for a particular
domain. In Chapter 5 we used the Rule Language to create a parallelisation and
optimisation engine for Vnus.

In this chapter, we will investigate the performance of the Rotan Vnus com-
piler in general, and the parallelising engines in particular, by running various
benchmarks and comparisons on the generated executables.

The Rotan Vnus compiler consists of two phases. The first is the transforma-
tion phase that accepts data-parallel Vnus and outputs message-based, explicitly
parallel Vnus. The second is the optimisation phase that applies three major op-
timisation engines (communication aggregation, ownertest absorption and owner-
test inlining) to the source program.

The Vnus backend then maps the final code to C++, which is compiled by a
conventional compiler (gcc version 3.2) and linked with the run-time system and
the communications library (MPI, mpich version 1.2.4) into an executable.

For our benchmarks we will use two different algorithms: a matrix multiplica-
tion and a successive overrelaxation (SOR). The cores of these algorithms feature
examples of the kind of vector/matrix-based numerical operations, such as in-
product calculation and filter application, that are frequently found in the large
scientific programs that are typical parallelisation candidates.

Our claim is that Rotan is a system that is mature and powerful enough to
tackle such real-world problems. In order to support that claim, we will investi-
gate the performance figures that result from using the Rotan Vnus compiler to
generate parallel versions of these algorithms.

As we are also interested in the contributions of each of our optimisation
engines to the overall efficiency of our compiled programs, we start this chapter
with a look at how the presence or absence of these engines affects performance

81
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(Section 6.2).
We continue by investigating the effects of different data distributions on the

performance, and how well such differences are handled by our system (Sec-
tion 6.3).

We end the chapter by comparing our results to that of more professional,
production-strength parallelising compilers (Section 6.4). Specifically, we will
look at the Timber compiler for the Spar/Java language, which also uses Vnus
as an intermediate language, and uses the same communication templates as
the Rotan Vnus compiler. As a second touchstone, we will use the PGHPF
High Performance Fortran compiler as an example of a commercial, well-regarded
compiler for high performance, parallel computing.

6.1 Matrix Multiplication
The benchmarks and analyses in this section all apply to an implementation of a
standard matrix multiplication algorithm C = A×B. The core code for the Vnus
implementation of this algorithm (presented here slightly simplified for readability,
and as yet without the actual data distribution specifications) is as follows:

program

declarations [
globalvariable A shape [1024, 1024] double,
globalvariable B shape [1024, 1024] double,
globalvariable C shape [1024, 1024] double,

]

statements [

// Initialisation
pragma [independent] foreach [i: 1024] statements [

pragma [independent] foreach [j: 1024] statements [
assign (A, [i,j]) 1.0d
assign (B, [i,j]) 1.0d
assign (C, [i,j]) 0.0d

],
],

// C = A x B
foreach [k: 1024] statements [

pragma [independent] foreach [i: 1024] statements [
pragma [independent] foreach [j: 1024] statements [

assign (C, [i,j])
((C, [i,j]), +, ((A,[i,k]), *, (B, [k,j]))),

],
],

],
]

Some notes about this algorithm and the variants used in the following sec-
tions:

• In our examples, matrix sizes are 1024 × 1024, unless specified otherwise
(a smaller size is sometimes used when the resulting execution times would
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become impractically large).

• Matrix multiplication involves the repeated calculation of vector inproducts.
In our examples, the summation or reduction step of the inproduct calcula-
tion is not itself parallelised (which would also be a possibility). Rather, par-
allelism is achieved by distributing entire inproduct calculations (between a
rows of A and columns of B) over the available processors. Each inproduct
is then calculated sequentially and locally (i.e. without further need for
communication), on individual processors.

• Parallelism is obtained by distributing the matrix C in the first dimension,
letting each processor take responsibility for computing one or more entire
rows of the result matrix (by virtue of the owner computes rule explained
in Section 2.4.4). The overall efficiency of the program will depend in large
part on how matrices A and B in turn are distributed and how much com-
munication those distributions will cause. It is worth noting that all the
elements of B will always be needed by every processor, regardless of the
distribution of C.

Some notes about the benchmarks:

• All benchmarks were performed on the ASCI DAS-2 supercomputer cluster
located at the Vrije Universiteit Amsterdam. The DAS-2 consists of 72 Dual
Pentium-III 1 GHz nodes that communicate through a Myrinet-2000 high-
speed interconnection network. Each node has 2 Gb of memory available.
In the benchmarks, only one of the two processors on each node is actually
used. Each node is always entirely dedicated to the executable running on
it.

• All execution times shown in the tables and graphs in this chapter are
measured in seconds, and denote the actual time spent on the program’s
main routine. The overhead associated with e.g. distributing the programs
to the individual nodes is not included in these numbers.

• Each parallel program is executed three times. For each run, the longest
execution time of all nodes is used as ‘the’ amount of time the program takes:
a parallel program is after all only as fast as its slowest component. For the
three runs, in turn, the largest value is chosen as the final execution time
to be plotted and used in the graphs. The minimum and average execution
times are similarly recorded in the tables for comparison purposes. The
bottom row of the time tables is reserved for timings obtained running the
sequential version of the program 16 times.
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6.2 The Effect of the Optimisation Engines
To study the effect of our three major engines, we measure the execution times
of our matrix multiplication program with various combinations of the engines
switched on and off.

The benchmarks in this section were performed with three matrices distributed
as follows:

A shape [256, 256] [block, collapsed] double,
B shape [256, 256] [collapsed, cyclic] double,
C shape [256, 256] [block, collapsed] double,

The smaller matrix sizes (n = 256) are necessary because with one or more
rule engines switched off the execution times will often increase with orders of
magnitude.

The distribution of the matrices is intended to be realistic in terms of what can
be expected if a matrix multiplication were to be a part of a lager program and
context. Important is that a significant amount of communication will need to
take place. There are certainly more efficient distribution combinations possible;
even some that would lead to absolutely no communication at all (as described
in section 6.3). For investigating the effect of the optimisation engines, however,
that is not a desired property.

6.2.1 All Optimisations Off
Optimising rule engines:

communication aggregation: off
ownertest absorption: off
ownerfunc inlining: off

#p min avg max

1 138.3 138.4 138.4
2 151.1 151.2 151.3
4 501.5 513.8 537.4
8 476.3 480.1 484.4

16 328.2 328.8 329.4
32 245.0 245.3 245.7
64 191.2 191.4 191.7

seq 1.0 1.1 1.3
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Figure 6.1: Matrix multiplication; all optimisations off.

Analysis: With all optimisation engines turned off, the program will dynam-
ically execute, for each processor, O(n3) element-wise send/receive function calls
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for accesses to B, O(n3) local copy operations for accesses to A and C, and O(n3)
owner and sender calls for all three matrices.

This large amount of element-wise communication is, especially for small num-
bers of processors, outweighing any speedup gained by the distribution of the
computation.

The sequential execution for this program does not take more than 1.1 seconds,
which is two orders of magnitude faster than even the best parallel case. It is clear
that the naive, element-wise communication scheme is, as expected, expensive to
the point of being of no value without further optimisation.

6.2.2 Ownerfunctions Inlined

Optimising rule engines:

communication aggregation: off
ownertest absorption: off
ownerfunc inlining: on

#p min avg max

1 12.3 12.3 12.3
2 82.8 82.9 82.9
4 290.8 294.8 300.5
8 345.4 348.8 351.2

16 194.1 195.1 195.9
32 112.2 112.5 112.7
64 61.3 61.4 61.6

seq 1.0 1.1 1.3
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Figure 6.2: Matrix multiplication; ownerfunctions inlined.

The curve has the same general shape as in the previous example, which is to
be expected, as the generated amount of communication and local copying will
still be O(n3). The significant change here is that now the owner/sender function
calls have been replaced by direct expressions, and no longer contribute to the
overhead.

As a result, the absolute execution times of this benchmark are improved by
as much as a full order of magnitude, especially for small numbers of processors
(where the amount of actual computation per processor still outweighs the amount
of communication).

The execution time for the n = 1 case is now only 11 rather than 140 times
slower than the sequential version of the program.
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Ownerfunction Inlining is not a parallelising optimisation as such, but it is
clearly an important step towards getting acceptable performance out of any
parallel Vnus program to begin with.

6.2.3 Ownertests Absorbed
Optimising rule engines:

communication aggregation: off
ownertest absorption: on
ownerfunc inlining: off

#p min avg max

1 128.3 128.4 128.5
2 145.3 145.3 145.4
4 454.2 462.4 470.1
8 474.2 477.2 480.6

16 328.9 329.4 329.9
32 245.0 245.4 245.8
64 192.2 192.4 192.6

seq 1.0 1.1 1.3
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Figure 6.3: Matrix multiplication; ownertests absorbed.

With Ownerfunction Inlining no longer on, the absolute execution times go
back up to the earlier level seen in Section 6.2.1.

With Ownertest Absorption applied, only the initialisation loops (which do
not need communication, because they only feature literal constants in their right-
hand side) are optimised. These loops will no longer cause traversal and testing
the entire index space.

However, the main computation loop, with the array elements used in the
right-hand side, will still lead to the same inefficient element-wise communication
scheme as before.

The optimised initialisation loops explain the small improvement in execution
times for the smaller values of p, but as p grows the effect of these optimisations
will become smaller for each processor, while the communication needs for the
main loop remain the same: no matter how few rows of A a processor is responsible
for, all elements of B need to be retrieved from the other processors. It is clear
that overall the element-wise communication remains dominant.

6.2.4 Communication Aggregated
Optimising rule engines:
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communication aggregation: on
ownertest absorption: off
ownerfunc inlining: off

#p min avg max

1 80.4 80.4 80.4
2 178.6 178.6 178.7
4 356.8 482.8 548.8
8 656.6 657.0 657.4

16 1278.3 1278.8 1279.1

seq 1.0 1.1 1.3
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Figure 6.4: Matrix multiplication; communication aggregated.

The results for this benchmark clearly show that Communication Aggregation
as a stand-alone optimisation does not work. The element-wise communications
have been eliminated in favour of buffered sending, but the cure is worse than the
disease.

Without owner-test absorption turned on, the newly introduced traversals
and tests of the index space that are necessary for the packing and unpacking of
elements into their communications buffers theoretically increase the execution
time of the program by a factor p. The only case in which this does not lead
to decreased performance, is when p = 1. For all other values of p, that what
is gained in terms of reduced calls to send/receive is lost in increased calls to
owner/sender tests.

6.2.5 All Optimisations On
Optimising rule engines:

communication aggregation: on
ownertest absorption: on
ownerfunc inlining: on

The results for this configuration are shown in Figure 6.5.
Analysis: With all optimisations turned on, we achieve speedup for the first

time.
In the p = 1 case, the algorithm runs only 3.5 times slower than in the se-

quential case (3.9 vs 1.1 sec).
For large p the execution times now are so small that measurement errors

become significant with respect to the actual execution time.



88 EXPERIMENTAL RESULTS 6.2

#p min avg max

1 3.7 3.8 3.9
2 2.9 2.9 2.9
4 2.0 2.3 2.5
8 0.6 0.7 0.7

16 0.3 0.3 0.3
32 0.2 0.2 0.2
64 0.3 0.3 0.3

seq 1.0 1.1 1.3
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Figure 6.5: Matrix multiplication; all optimisations on.

We therefore increase the matrix size n to 1024, and rerun the same bench-
mark.

6.2.6 Increasing n from 256 to 1024
Distribution of matrices:

A shape [1024, 1024] [block, collapsed] double,
B shape [1024, 1024] [collapsed, cyclic] double,
C shape [1024, 1024] [block, collapsed] double,

All optimisations on

#p min avg max

1 271.9 278.9 291.5
2 196.4 203.0 213.8
4 189.4 196.4 200.4
8 97.3 105.9 117.1

16 48.4 53.8 56.7
32 15.5 16.0 16.3
64 8.9 9.0 9.0

seq 66.8 71.2 81.6
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Figure 6.6: Matrix multiplication; n = 1024.

Analysis: The increased ratio of communication vs computation combined
with less noise in the measurements indeed result in a curve that is not as steep,
but also less spiky than in the previous benchmark.
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With n now 4 times larger, the sequential version of the program takes about
70 seconds, which is indeed the expected 43 = 64 times longer than the 1.1 seconds
it took for the smaller matrix size.

The parallel versions show more variation, taking approximately 74 times
longer for p = 1 and p = 2 but increasing to as much as 167 times longer for
larger p. The speedup effect remains, but is now less pronounced.

Note that the cyclic distribution of matrix B in the second dimension re-
mains a good one as far as optimising communication is concerned. Because
it each column of B will be allocated in its entirety to a single processor, it
can therefore be efficiently communication-aggregated, i.e. requiring only a single
blocksend/blockreceive pair, rather than the multiple ones that would have been
necessary had the column been divided over many different processors.

Nevertheless, there are other distribution options, which we will investigate in
the next section.

6.3 The Effect of Array Distributions
In the next few examples we will investigate the effect of varying array distribu-
tions on the execution time of the program.

All the examples in this section use identical rule sets, with all optimisation
engines turned on.

6.3.1 A and C Block Distributed, B Replicated
Distribution of matrices:

A shape [1024, 1024] [block, collapsed] double,
B shape [1024, 1024] [collapsed, replicated] double,
C shape [1024, 1024] [block, collapsed] double,

#p min avg max

1 231.6 236.9 239.6
2 94.2 103.0 120.4
4 47.5 51.5 60.4
8 23.6 25.3 27.5

16 12.3 13.0 14.7
32 6.6 6.9 7.4
64 3.5 3.7 3.8

seq 67.1 71.2 81.6
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Figure 6.7: Matrix multiplication; replicated B.
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Analysis: An obvious way in which different distributions can be used to
obtain a better-performing matrix multiplication (assuming sufficient memory
is available on the individual nodes) is to replicate the entire matrix B over
all processors, since we have already seen that every processor needs all of B’s
elements.

The rule compiler engines will recognise that B is replicated and will generate
no communication statements for accesses into that array.

For A and C communication will still be generated, but since they have
identical distribution, a good parallelisation of this version does not need to use
any communication between processors at all: the rows of A and C are always
guaranteed to reside on the same processor.

There is currently no rule engine in the Rotan Vnus compiler that implements
this Send-to-self Elimination for A and C, but the Vnus run-time system in fact
implements it at run-time in the software layer that lies between the Vnus and
the MPI communication primitives.

Therefore, even though the SPMD code generated by the rule compiler will
still contain send and receive function calls for the accesses to elements of A
and C, these are executed by the run-time system as entirely local buffer copy
operations, thus leading to a program that performs no actual communication at
all. All that remains is the overhead of the unnecessary function calls.

This explains why the results for this program so closely follow the ideal
speedup curve. There is no communication, and the use of the Owner-test Absorp-
tion engine ensures that the computation is divided over the processors without
overhead or redundancy.

6.3.2 A and C Cyclic Distributed, B Replicated
Distribution of matrices:

A shape [1024, 1024] [cyclic, collapsed] double,
B shape [1024, 1024] [collapsed, replicated] double,
C shape [1024, 1024] [cyclic, collapsed] double,

Analysis: In theory this graph should have been identical to the one in Sec-
tion 6.3.1, where A and C were block distributed, because the send-to-selfs get
eliminated by the run-time system in exactly the same way. Instead the program
runs about 10–20% slower, although the linearity of the speedup is preserved.

The difference can be explained by looking at the matrix multiplication al-
gorithm used and realising that the cyclic distributions of A and C are not well-
suited to the row-based inner computation loop. For such a loop, the accesses
into these arrays will mostly be non-contiguous. This means that the processor
caches will not be utilised as well as they can be in the block distributed case.
The resulting overhead account for the slowdown of the program.

In both cases, the overhead of the communication-related statements and calls,
even if they do not actually lead to communication, also contributes to the ab-
solute execution times. It is this kind of overhead that can be eliminated by
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#p min avg max

1 208.4 227.6 237.3
2 109.3 123.9 134.5
4 56.2 62.2 67.8
8 29.1 31.5 34.4

16 14.8 16.2 17.7
32 8.0 8.5 9.2
64 4.3 4.5 4.8

seq 66.9 71.0 81.5
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Figure 6.8: Matrix multiplication; A and C cyclic.

the application of the shrinking optimisation described earlier, at the expense of
having to do more computation in the index space.

6.3.3 C Block Distributed, A and B Replicated
Distribution of matrices:

A shape [1024, 1024] [collapsed, replicated] double,
B shape [1024, 1024] [collapsed, replicated] double,
C shape [1024, 1024] [block, collapsed] double,

#p min avg max

1 145.7 154.3 165.4
2 74.3 78.6 83.1
4 36.8 38.5 41.6
8 18.3 19.4 21.1

16 8.9 9.6 10.8
32 4.4 5.1 5.6
64 1.9 2.0 2.3

seq 66.9 70.9 81.6
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Figure 6.9: Matrix multiplication; A and B replicated.

Analysis: By returning C to block distribution and replicating A as well as
B, we indeed get rid of the slowdown factor, and are now almost entirely aligned
with the linear speedup curve.

The superlinear speedup at p = 64 is are caused by cache-effects coming into
play.
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6.3.4 The Effect of Bounds-checking

By default, the Vnus language performs bounds checking on all array accesses.
This checking can be turned off for an additional speed increase by specifying a
global pragma in the source program. We have not done this for the programs
benchmarked in this chapter, as it would be an arbitrary backend optimisation
not corresponding to typical real world use. It is also not relevant to the issue of
how well the optimisation rules are performing. It is nevertheless interesting to
see to what extent the overhead associated with this bounds-checking contributes
to the program execution time.

The previous benchmark rerun with bounds-checking switched off led to the
following results:

Distribution of matrices:

A shape [1024, 1024] [collapsed, replicated] double,
B shape [1024, 1024] [collapsed, replicated] double,
C shape [1024, 1024] [block, collapsed] double,

Boundschecking off
All optimisations on

#p min avg max

1 121.8 130.3 139.7
2 61.2 66.4 70.3
4 31.1 33.6 35.4
8 14.3 16.5 17.8

16 7.4 8.2 9.2
32 3.9 4.5 4.8
64 1.6 1.7 1.9

seq 58.8 62.8 72.8
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Figure 6.10: Matrix multiplication; no bounds-checking.

Analysis: Without bounds-checking, the parallel program consistently ex-
ecutes 15% faster in all cases. A slightly smaller percentage holds for the se-
quential version of the program, which now only takes 72 seconds instead of 82.

Under these circumstances, the parallel version for p = 1 takes only 2 times
as long as the sequential program. There is clearly still room for reducing the
overhead caused by e.g. the communication administration, but for our prototype
compiler the ratio is quite acceptable.
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6.4 Comparison with Other Compilers
We have shown in the previous sections that as far as the creation of efficient
parallel programs is concerned, the results for our compiler are satisfactory and
according to predictions: given the right distributions we see expected levels of
speedup.

The Rotan Vnus compiler is a proof-of-concept implementation intended to
show that it is possible to create a non-trivial parallelising compiler using the
tools and infrastructure provided by the Rotan system. It is not intended to be
feature-complete or of production-level strength.

Nevertheless, it is interesting to compare how well the Rotan Vnus compiler
performs in comparison with other, less experimental parallelising compilers.

6.4.1 Timber
As one example of a more complete and polished parallelising compiler, we will use
the Timber compiler for Spar/Java. This is a particularly appropriate touchstone,
because this compiler also uses Vnus (albeit a later, more advanced version) as its
intermediate format, and because it uses comparable parallelisation templates and
optimisation engines, implemented using Tm treewalkers (see also section 3.3).

Our experiments use the experimental version 2.0 of the Timber system, con-
figured for MPI mpich support, and also running on the DAS-2 supercomputer.

We begin by investigating the case where no actual communication is present,
i.e. with the distributions equal to the ones used in Vnus in Section 6.3.3:

Distribution of matrices:
A shape [1024, 1024] [collapsed, replicated] double,
B shape [1024, 1024] [collapsed, replicated] double,
C shape [1024, 1024] [block, collapsed] double,

All optimisations on.

The Spar/Java program that corresponds to this Vnus program is (edited
lightly for readability) is:

public class matmat
{

static final int N = 1024;
static final int bsize =

N / spar.lang.DataParallel.getNumberOfProcessors();

static double A[*,*]
<$on = (lambda (i j) P[_all])$> = new double[N,N];

static double B[*,*]
<$on = (lambda (i j) P[_all])$> = new double[N,N];

static double C[*,*]
<$on = (lambda (i j) P[(block i @bsize)])$> = new double[N,N];

public static void main()
{

<$independent$> foreach (i :- 0:N, j :- 0:N)
{

A[i,j] = 1.0d;
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B[i,j] = 1.0d;
C[i,j] = 0;

}

foreach (k:-0:N)
<$independent$> foreach (i :- 0:N, j :- 0:N)
{

C[i,j] += A[i,k] * B[k,j];
}

}
}

As mentioned, although the Timber compiler also uses Vnus as an interme-
diate language, its backend is significantly different from the one used for Rotan.
The Vnus to C++ mapper, the Vnus format itself, and the run-time system are
all improved versions that can be expected to contribute to superior execution
times.

In particular, the improvements to the Vnus format make it possible to have
optimisation engines perform better analyses on the distributed arrays, and gener-
ate improved code. The C++ data structures and access methods in the run-time
system were also rewritten, specifically in order to speed up array accesses and
eliminate administrative overhead.

Adapting Rotan to use this newer backend, while possible in principle, was a
task that was outside of the scope of this thesis. It should also be noted that the
newer backend is not a finished product, but itself a research project in constant
flux.

The results of the benchmark for the Spar/Java version of the matrix multi-
plication algorithm are as follows:

#p min avg max

1 62.9 64.3 66.7
2 30.3 34.6 40.8
4 15.3 18.4 20.4
8 7.0 8.8 10.3

16 3.6 4.6 5.2
32 1.3 1.5 2.2
64 0.6 0.6 0.6

seq 58.8 70.3 81.2
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Figure 6.11: Matrix multiplication, no communication; Rotan vs Timber.

Analysis: The Spar/Java program about 2–3.8 times faster (in the truly par-
allel cases) than the equivalent Vnus program of Section 6.3.3. As there is no
actual communication done, this can be entirely ascribed to the improved code-
generation in the backend, specifically the faster array accesses.



6.4 COMPARISON WITH OTHER COMPILERS 95

In the next example, we take communication into account by changing the
distribution of the arrays to match that of the Vnus program of Section 6.2.6:

static double A[*,*]
<$on = (lambda (i j) P[(block i @bsize)])$> = new double[N,N];

static double B[*,*]
<$on = (lambda (i j) P[(cyclic j)])$> = new double[N,N];

static double C[*,*]
<$on = (lambda (i j) P[(block i @bsize)])$> = new double[N,N];

The results for this benchmark are:

#p min avg max

1 64.7 67.5 72.9
2 87.7 91.3 97.8
4 72.1 81.0 85.8
8 45.6 46.6 47.2

16 23.0 23.4 23.7
32 7.9 8.2 8.6
64 4.3 4.3 4.3

seq 63.8 70.7 81.3
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Figure 6.12: Matrix multiplication with communication; Rotan vs Timber.

Analysis: This curve has the same general shape as the version compiled by
Rotan, and is 2–2.5 times faster in absolute sense in all truly parallel cases. Much
of that, as we have seen, is explained by the better backend. The rest can be
ascribed to the better rules for parallelism employed by the Timber compiler, e.g.
the more aggressive optimising away of send-to-selfs at the source level, rather
than leaving this for the run-time system to handle during run-time. This also
explains why in the p = 1 case (when all communication will be a send-to-self)
this Spar/Java program performs almost 4 times better than the Vnus program.

6.4.2 PGHPF

As a second touchstone, we used a commercial product: the High Performance
Fortran compiler PGHPF from Portland Group Compiler Technology [Por01].
This is a full-fledged assembler-generating HPF compiler that has been commer-
cially available since 1993. For our benchmarks, we used version 4.0-2, running
on the DAS-2 supercomputer.

We again begin by investigating the case where no actual communication is
done, corresponding to the Vnus program in Section 6.3.3.

The equivalent HPF matrix multiplication program is as follows:
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parameter(n = 1024)

double precision, dimension(1:n, 1:n) :: A, B, C

!HPF$ DISTRIBUTE A (*,BLOCK)
!HPF$ DISTRIBUTE B (*, *)
!HPF$ DISTRIBUTE C (*,BLOCK)

integer i,j,k

A = 1.0d0
B = 1.0d0
C = 0.0d0

do k=1,n
forall(i=1:n, j=1:n)

C(j,i) = C(j,i) + A(k,i) * B (j,k)
end forall

enddo

In Fortran, arrays are stored in column-wise order, as opposed to row-wise
order for C or C++. In order to keep the comparisons fair, it is necessary to swap
both the distribution specification (which now specifies BLOCKin the second di-
mension rather than in the first) and the array accesses ((j,i) instead of (i,j) ).
This does not change the actual algorithm, but ensures that the Fortran version
will be able to make use of contiguous memory accesses and possible cache effects
in exactly the same way as the Vnus and Spar/Java programs.

The timings for the program are as follows:

#p min avg max

1 41.5 41.5 41.5
2 20.7 22.4 25.1
4 11.2 11.4 11.6
8 5.0 5.5 5.9

16 2.8 2.9 3.0
32 1.4 1.5 1.5
64 0.5 0.5 0.5

seq 39.8 44.6 49.6
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Figure 6.13: Matrix multiplication with communication; Rotan vs PGHPF.

Analysis: The Fortran program performs almost twice as well (40%) better
than the Spar/Java program. This is not surprising, considering the fact that
machine code is generated.

Next, we again introduce communication by changing the distribution on the
arrays to match that of the Vnus program of Section 6.2.6:

!HPF$ DISTRIBUTE A (BLOCK,*)
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!HPF$ DISTRIBUTE B (*, CYCLIC)
!HPF$ DISTRIBUTE C (BLOCK,*)

The results are shown in Figure 6.14:

#p min avg max

1 49.6 49.8 50.1
2 25.2 25.2 25.2
4 12.7 12.9 13.4
8 6.7 7.1 7.8

16 4.9 5.3 5.6
32 7.8 8.1 8.5
64 23.3 23.3 23.4

seq 41.6 44.6 49.5
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Figure 6.14: Matrix multiplication; Fortran version with communication.

Analysis: This is unexpected behaviour. The Fortran compiler somehow gen-
erates such inefficient communication templates, that the total execution time
actually starts rising again for the very large values of p, although for p < 32 the
program comfortably outperforms even the Timber compiler.

We suspect that the communication code generated by the PGHPF compiler
is deliberately chosen such that it performs extremely well for a certain range
of p, rather than attempt to be generically efficient, as is the case for Rotan
and Timber , but lack of information about the internal workings of the PGHPF
compiler makes it difficult to prove this theory, other than by looking at the
results.

An interesting observation is that the effect seen here appears related to the
use of the forall construct. If the forall s are replaced by conventional do loops
(which the PGHPF compiler will still try to ‘auto-parallelise’), the results are as
shown in Figure 6.15.

Analysis: These results are uniformly worse than the previous version for
p < 16, but uniformly better for p > 32, although the Timber compiler still
performs better for p = 64 (and probably for larger p as well).

As investigating the peculiarities of the PGHPF compiler is not in itself the
purpose of this chapter, we will not continue this discussion here. Instead we now
turn to our second test case.

6.5 Red/black SOR
As a final comparison of the parallel programs generated by the Rotan system with
the Timber and PGHPF compilers, we consider an implementation of red/black
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#p min avg max

1 88.5 88.5 88.5
2 88.4 88.6 88.6
4 44.2 44.2 44.4
8 11.5 11.5 11.5

16 6.7 7.2 7.4
32 5.1 5.6 5.8
64 5.6 5.6 5.6
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Figure 6.15: Matrix multiplication; alternate Fortran version without forall .

success overrelaxation (SOR).1 This algorithm is more complex than matrix mul-
tiplication, and the resulting program is heavier on both computation and com-
munication.

In its original form, the algorithm calculates a new version A′ of a central ma-
trix A in each iteration of its main loop. The program terminates when the max-
imum absolute difference between A′ and A drops below a certain error threshold.

Expressed in Spar/Java (with some of the pragmas left out to enhance read-
ability), the data structures and main loop look like this:

static final int N = 256;
static final int bsize =

N / spar.lang.DataParallel.getNumberOfProcessors();

static double [*,*]
<$on = (lambda (i j) P[(block i @bsize)])$> Grid = new double[N,N];

static double [*,*]
<$on = (lambda (i j) P[(block i @bsize)])$> oldGrid = new double[N,N];

static double [*,*]
<$on = (lambda (i j) P[(block i @bsize)])$> diff = new double[N,N];

// ...

while (error > threshold)
{

// Store old values;
foreach (i :- 0:N, j :- 0:N)

oldGrid[i,j] = Grid[i,j];

// Compute even points
foreach (k :- 1:N-2:2, m :- 1:N-2:2)

Grid[k,m] =
(Grid[k+1,m] + Grid[k-1,m] + Grid[k,m+1] + Grid[k,m-1])/4.0;

foreach (k :- 2:N-1:2, m :- 2:N-1:2)

1The SOR implementations discussed in this section are based on an original HPF version
by S. Elmohamed [Elm96].
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Grid[k,m] =
(Grid[k+1,m] + Grid[k-1,m] + Grid[k,m+1] + Grid[k,m-1])/4.0;

// Compute odd points
foreach (k :- 2:N-1:2, m :- 1:N-2:2)

Grid[k,m] =
(Grid[k+1,m] + Grid[k-1,m] + Grid[k,m+1] + Grid[k,m-1])/4.0;

foreach (k :- 1:N-2:2, m :- 2:N-1:2)
Grid[k,m] =

(Grid[k+1,m] + Grid[k-1,m] + Grid[k,m+1] + Grid[k,m-1])/4.0;

// Compute error
foreach (i :- 0:N, j :- 0:N)

diff[i,j] = abs(Grid[i,j] - oldGrid[i,j]);

error = 0.0d;
foreach (i :- 0:N, j :- 0:N)

error = max(error, diff[i,j]);

// Compute and store new grid value
foreach (i :- 0:N, j :- 0:N)

Grid[i,j] = oldGrid[i,j] + omega * (Grid[i,j] - oldGrid[i,j]);
}

Since computing the error value involves a reduction operation which Rotan
has no support for, the algorithm was adapted to loop a finite but large number
of times (12,711), which is sufficient to calculate Grid within an error margin of
0.01 for a matrix of 256 by 256 elements.

The results for each of the three systems are given in Figures 6.16, 6.17
and 6.18, while Figure 6.19 provides an aggregate view of the same results.

#p min avg max

1 854.0 857.4 863.4
2 431.0 454.7 499.7
4 209.4 216.0 219.6
8 79.2 83.4 86.1

16 33.2 33.6 34.1
32 17.2 17.7 18.4
64 15.1 15.5 16.5

seq 230.5 248.3 275.5
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Figure 6.16: SOR;Vnus version, compiled by Rotan.

Analysis: These figures illustrate that the benchmarks obtained for the simpler
matrix multiplication program already offer a good indication as to how a more
complex program will behave. All three compilers create code that show speedup,
although the absolute numbers vary.
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#p min avg max

1 218.9 219.8 220.6
2 95.3 102.3 107.5
4 23.3 26.4 32.5
8 10.2 10.2 10.3

16 6.5 6.5 6.5
32 5.0 5.0 5.0
64 5.0 5.0 5.0

seq 199.4 217.4 245.1
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Figure 6.17: SOR;Spar/Java version, compiled by Timber.

#p min avg max

1 223.1 238.8 246.7
2 107.4 107.8 108.3
4 44.5 44.6 44.7
8 14.9 15.9 16.9

16 10.0 10.1 10.2
32 8.7 8.9 9.1
64 9.0 9.1 9.1

seq 210.0 218.4 231.1
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Figure 6.18: SOR;HPF version, compiled by PGHPF.

In the sequential case, the Timber - and PGHPF-generated programs are, both
at 245 seconds, only about 10% faster than the Rotan code.

For the truly parallel cases, however, the Timber results are 3.3 (p = 64)
to as much as 8.4 (p = 8) times faster than Rotan. Partially we have already
seen that this can be explained by the better backend and decreased overhead.
Another factor is also that Spar/Java has a special pragma for identifying stencil
operations such as found in the SOR main loop to the compiler. If this pragma
is not used, Timber is only 7.6 times faster for p = 8.

The Fortran program (here again executed with a column-wise distribution
and traversal of the matrix index space) shows the same overall speedup curve,
but does not parallelise as well as the Timber version. For p = 2, the two versions
perform the same, but for each additional processor the Fortran version starts
lagging behind a bit more, until by p = 64 it is a full 45% slower.

These results support our earlier conclusion that the PGHPF compiler, while
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Figure 6.19: SOR;Rotan vs Timber vs PGHPF.

better at generating efficient computation, simply does not appear to use commu-
nication algorithms that are as scalable as the ones used by Rotan and Timber .

6.6 Conclusion
The concept of rule optimising engines is proving itself. Rules can have a large
impact on the shape and position of a benchmark curve (and are therefore not
just trivial toy examples), and being able to turn them off and on facilitates
experimenting and analysis.

The Rotan Vnus compiler is, in the worst cases about 7.5 times, and in the
best cases about 2 times slower than the less experimental compilers. This can
plausibly be explained by the improved backends and run-time systems for those
other compilers, and in the Rotan Vnus compiler’s lack of certain specialised
optimisation engines that could improve performance by getting rid of useless
send-to-selfs, or by performing tiling-specific communication tweaks.

In the last chapter of this thesis, we will use these performance results as part
of the overall evaluation of the Rotan transformation system.





Chapter 7
Evaluation

The previous chapters of this thesis have shown that the concept of an instantiable,
rule-based compiler is a valid and useful one in order to manage the complexity
involved in the translation and optimisation of data-parallel programs.

In Chapter 6 we have evaluated the Rotan system in terms of the efficiency
of the code it produces. In this chapter, we will evaluate the Rotan system (and
specifically its core component, the Rule Language) against the original design
criteria for the system, and examine how well the prototype implementation has
stood up in different areas of use. Our examination will focus on the following
areas:

Applicability to different domains. The main test case we have presented
in Chapter 5 involved the implementation of transformations for the Vnus
domain, but how well-suited is Rotan to handling other domains and lan-
guages?

Applicability of embedded code. The possibility to escape to embedded code
is one of the strengths of the Rule Language, but at the same time something
a compiler writer does not want to have to resort to it too much. How often,
and to what extent has embedded code actually been necessary in the Rotan
Vnus compiler?

Expressive power of the Rule Language. Related to the previous points is
the question of how powerful the Rule Language is (or where its limits lie),
and to what extent it allows the programmer to specify arbitrary transform-
ations with ease.

Readability of the Rule Language. Does the Rule Language manage to avoid
being a ‘write-only’ language?
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Portability of the implementation. Is the Rotan system itself well-written,
and in particular: portable to other systems and platforms?

Performance of the system in time and space. The efficiency of the gener-
ated code is of paramount importance in compiling for parallelism, but even
though we explicitly prefer compile-time performance penalties over run-
time performance penalties, the compilation system must perform within
certain constraints in order to be a realistic alternative to a conventional
black-box compiler.

Development environment and support tools. The Rule Language and the
transformation engine are not the totality of the Rotan system. How well
is rule programming supported by other components of Rotan?

For each of these areas, we discuss the original design considerations and
decisions, and we evaluate the actual implementation as it currently exists. Sub-
sequently, we offer suggestions for future changes and improvements, both short-
term and long-term.

These evaluations of Rotan against its own design criteria are useful, but also
a bit more removed from the reality that prompted those design criteria in the
first place. In order to further ground our evaluation of the Rotan system in a
real-world context, we will also compare Rotan against the Timber compilation
system for data-parallel programming languages developed at the Parallel and
Distributed Systems group at the Delft University of Technology.

7.1 Applicability to Different Domains

7.1.1 The Design

During the course of the research described in this thesis, the Rule Language has
been applied to a number of different domains.

The Rotan system has served as both backend and frontend in addition to be-
ing used for parallelisation and optimisation of the intermediate language Vnus.
As a frontend, Rotan converted programs written in the high-level parallel lan-
guage Booster into the intermediate format V-cal (a precursor of Vnus). As a
backend, it mapped V-cal directly to a C++-like target domain.

Proof-of-concept instantiations of the Rule Language were made for the Vista
language [Jon91], a transaction-based programming language developed in the
ParTool project [Ste92], and for the functional, intermediate language F-Code
[Muc93]. These instantiations included the definition of a domain file, and the
creation of a small number of test rules. The experience with these experiments
was positive, and did not give rise to doubts about the system’s ability to describe
transformations on parse trees in these domains.
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7.1.2 The Implementation
Each domain is implemented as a set of generated C++ classes (one class for each
node type in the domain), originating from a single domain description file. This
lower-level interface has in fact seen several iterations and major rewrites. The
first implementation used lex and yacc to parse a domain description file, and the
custom tool libgen to generate a set of macro-filled source files from the results,
which finally yielded the C++ source code when put through the C preprocessor.

This entire process was painfully slow (because the preprocessor had to be
called for every file), error-prone, and yielded intermediate files that became pro-
gressively larger, more unreadable and more difficult to debug with each further
step. The system itself was so complex as to be unmaintainable.

Eventually, this approach was abandoned altogether, and the decision was
made to instead use the template managing system Tm [Ree92], which is spe-
cifically suited to the creation of template-based code. This change has been
successful. Domains are now described in Tm data structure files, and the gener-
ation of the C++ classes is has become fast, stable, and manageable. Generating
the code for the entire C++ class hierarchy (205 classes) takes only seconds on a
standard issue 350 MHz desktop Pentium-PC, as opposed to the minutes it took
when the C preprocessor was used.

7.1.3 Evaluation and Future Suggestions
The capability to use domains as a means of instantiating the Rule Language
for a specific problem space has been one of the most successful concepts in the
systems. There are no known problems with the current implementation, nor
with the current language constructs.

One possible direction of future research is the addition of a type system
to the Rule Language with respect to entire domains (not just with respect to
nodes in the domain). It would then become possible to warn the programmer
if rules are written that go “in the wrong direction”, i.e. from target domain to
source domain, or to warn if at the end of a run parts of the input tree are still
untransformed. This can already be largely implemented with the type system
for nodes currently in place, but additional support could be given to the user
if the Rule Language would be extended in this way to recognise and be able to
handle multiple domains in a single instantiation.

7.2 Applicability of Embedded Code

7.2.1 The Design
The Rule Language was designed with the goal of making basic transformations
on a domain tree easy by providing constructs in the language, and complex
transformations possible without turning the language unwieldy.
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In order to accomplish the latter, hooks were provided in the Rule Language for
attaching straight C++ code to individual rules, both in the match patterns and in
the action patterns. Embedded code provides full access to the domain tree, and
therefore adds unlimited potential to the rule. This comes at the expense of type
safety (the system has only very limited knowledge about what is specified in an
embedded code block) and at the risk of interfering with the proper application of
the rule itself (by bringing the domain tree into an inconsistent or invalid state).

In the Rotan Vnus compiler, 37% of the rules contain embedded code. As
embedded code is intended as an if-all-else-fails escape option, it is important to
investigate these instances. Excessive use of embedded code indicates a lack of
expressive power in the Rule Language proper.

A closer examination of the rules in the Rotan Vnus compiler, yields the
following break-down with respect to the different types of problem solved by use
of embedded code1:

1. 43%: Creating a copy of a part of the matched program tree (e.g. cloning
operations used when shared subtrees are not desirable). This is a one-
statement operation.

2. 42%: Constructing a new part of the program tree from scratch (e.g. creating
unique new identifiers for newly introduced variables). This too is a one-
statement operation.

3. 15%: Other. On average, these embedded code blocks are only about four
lines long.

From this list we can see that the vast majority (85%) of embedded code used
in the Vnus compiler serves to implement two very primitive operations, rather
than to add truly unique functionality to a rule. A future version of the Rule
Language might be expanded to encompass these primitives (offering the user
e.g. a built-in cloning operator).

Some changes have already occasionally been made over the course of the Rule
Language’s lifetime. For example, the ability to compare matched nodes of the
String and Integer types against literal constants directly from within the Rule
Language itself, was at one point incorporated into the rule language when previ-
ously it had to be performed in embedded code instead. This allowed more than
a third of the then existing embedded code to be replaced by direct comparison
in the where-clauses.

Embedded code of the cloning type indicates a specific issue in the Rule Lan-
guage design: rule variables are implemented as pointers, and in the action part
of a rule it was decided to give the use of a rule variable the semantics of a pointer
copy rather than that of a deep copy of the structure the pointer is pointing to.
Both semantics have advantages and disadvantages, depending on the type of

1The percentages are based on lines of code, and are very approximate.
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rule. In retrospect it might have been a better idea to incorporate into the Rule
Language the possibility to offer the user both types of semantics.

Embedded code of node construction type raises another issue: although string
literals are built into the Rule Language, we find that escape to embedded code
is still necessary for the purpose of creating unique strings, i.e. a sequence of
identifiers of the form var1 , var2 , var3 , etc, such as is used during the insertion
of temporaries. The number of necessary variables is not known during compile
time, because it can for instance depend on the number of successful matches for
the rule. In the current Vnus compiler a custom-written idGenerator class is used
to dynamically create unique strings from within embedded code. This is also a
functionality that could be lifted into the Rule Language itself, although here the
target is much less generic than in the cloning case. Care should be taken not to
overload the language with too many ‘handy’ constructs.

The third type of embedded code (the ‘other’ category) is a catchall category
that contains some odds and ends, such as code for a specific rule that needed to
perform a simultaneous iteration and comparison over two lists (which is not sup-
ported by any Rule Language construct), and code that tests for a more complex
relationship between rule variables than equality.

7.2.2 The Implementation
The current implementation for embedded C++ support is straightforward. All
embedded code in a rule is first run through a filter that changes the references to
rule variables to references to the corresponding C++ pointers. The filtered C++

code is then copied to a separate source file, compiled, and linked back into the
Rotan system.

The rule source files are generated by the rule system itself from hard-coded
C++ code. This makes them inflexible, difficult to maintain, and causes unneces-
sary recompilations. Since the rule source files all have the same general structure,
a more efficient implementation would use a more generic template-supported ap-
proach, possibly using the template manager Tm.

7.2.3 Evaluation and Future Suggestions
Embedded code has proven valuable for increasing flexibility, but also for working
around problem spots or missing functionality in the Rule Language design. Most
of these problems turn out to be minor, and can be addressed in a future version
of the Rule Language.

The implementation of the handling of embedded code consists of code that
is complex and error-prone. While a future version of the rule system would be
improved by reimplementing the embedded code support, the interface to the Rule
Language has proven adequate and can remain as it is, although more knowledge
and compile-time checking of embedded code from within the Rotan system itself
would be welcome.
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7.3 Expressive Power of the Rule Language

7.3.1 The Design
The Rule Language has been designed primarily as a practical language, intended
to solve existing problems fast and quickly. As such, the language design was
steered to a great extent by practical concerns, leading to such properties as
the embedded code hooks, the domain-parameterisability, and the direct support
(through lists, expressions and nodes, see Chapter 4) for domains representing
programming languages.

Although never the main focus, attention was also given to other, more general
features of language-design, such as type-safety, abstraction, and code reusability.

The Rule Language that has emerged from this result-oriented approach can,
in some of its aspects, be compared to the C language: powerful and high-level
enough to be able to accomplish virtually anything in a structured, readable way;
but also with some low-level constructs and idiosyncrasies that can take time to
master, and that do not always lead to as elegant a program as one might like.

7.3.2 The Implementation
In this section we enumerate what have emerged as noticeable design issues with
the implementation of the Rule Language. All these problems can be (and have
been) worked around.

• Flow control constructs. Rules are like single statements in an imperative
language. Each rule causes a change in the program state, and although
rules can be applied iteratively, this iteration is coarse-grained and cannot
be influenced (let alone defined) by the programmer — it is all or nothing.
Basically every rule is an atomic event. Drivers and Engines are sequen-
tial orderings of rules — compound statements, to continue the imperative
language analogy. The Rule Language would be improved by better control
flow for rules. It should be possible to try rules conditionally using if-then-
else constructs. It should be possible to gain finer control of iterative rule
application using while, repeat, or for-constructs. It should be possible to
group sets of rules into true subroutines, and be able to apply those, collect-
ively. Finally, it might be necessary to allow the programmer a means to
influence or define the traversal and application strategy followed for specific
rules.

• Re-entrant rules. A rule will always work on the entire program tree. Even
in those cases where this appears to be not the case, the entire program tree
is implicitly used as the source for the rule. This makes it impossible to apply
rules from within other rules (another desirable aspect of Rule Language
flow control), and hence causes code duplication that might otherwise be
avoided.
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• Rule variable arguments. Currently, rule variables are entirely local to a
rule. In fact, under certain circumstances rule variables are local to only a
part of a rule. Once better control flow for rules becomes part of the Rule
Language, it will also become desirable to be able to refer to parts of the
program tree outside of individual rules, and to pass parts of the program
tree as arguments to rule routines or even individual rules.

• Lists, Expressions, Nodes. Lists, expressions, and nodes form the key struc-
tural components of the Rule Language. These constructs have become
closely entwined with their counterparts in the underlying implementation.
These same structures are used not only in the program trees, but also in
the implementation of the Rotan system itself. Our experiences with writing
rules have shown that the decision to incorporate these structural entities
into the Rule Language was in itself a good one, but the implementation of
domains and the system needs to be kept more separate. The use of typed
lists and typed expressions should be investigated in particular, as well as
better ways of manipulating individual list elements and sublists. The same
holds for nodes that allow subscripting.

• Parameterised creation of program tree fragments. One of the main reasons
for escaping to embedded code (see the previous section) is the fact that trees
created as the result of the action part of a rule cannot pass parameters
to the underlying constructors: they are created using only the default,
parameter-less constructors in the corresponding C++ class. Any members
taking non-default values must be explicitly constructed in embedded code.
The Rule Language can offer much better support for such actions.

7.3.3 Evaluation and Future Suggestions
Most of the implementation changes discussed above will necessitate a non-trivial
redesign of the core transformation engine, although the essence of the rule system
would not be changed: individual rules would still match and fire in the same way
that they do today.

7.4 Readability of the Rule Language

7.4.1 The Design
In general, rules are more difficult to read than to write. Small rules can be very
elegant (particularly if no embedded code is involved), but the more complex rules
quickly become cluttered and hard to follow, even with careful formatting.

The very fact that the Rule Language is parameterisable adds considerably
to its complexity. Even though the number of constructs and keywords provided
by the language proper is quite small, each domain will generally contribute a



110 EVALUATION 7.4

complete hierarchy of node types. This means that a rule can be difficult to un-
derstand if the reader has no knowledge of the domain. Even if that knowledge
is present it may be difficult to have all that knowledge at immediate recall when
reading a rule. For example, someone attempting to understand a Vnus trans-
formation rule must not only understand the Rule Language constructs used, but
must also understand the entire Vnus language and have a good idea of what a
Vnus program tree would look like.

A second factor is that a transformation rule is an attempt to write down in
a linear, one-dimensional sequence, something that is inherently two-dimensional
(tree structures), and has an associated time-axis as well. The ‘match’ part of the
rule corresponds to an initial program state, the ‘action’ part of the rule corre-
sponds to the program state resulting from the firing of the rule. This time axis
can be adequately represented in the sequential form used by the Rule Language,
since it is a universally established programming convention that, when reading
top-to-bottom, subsequent units of code represent subsequent events in time. Un-
fortunately, the two-dimensionality of each rule-part is not so easily mapped to a
linear sequence. The program tree represented by each part is a two-dimensional
graph, with potentially unlimited branching potential, and potentially unlimited
depth. Rule Language programmers can attempt to map this to a readable text
by using vertical indentation for representing branching, and horizontal indenta-
tion for representing depth, leading to a ‘toppled’ representation of the program
tree.

This approach leads to obvious problems: deep rules will quickly extend too
far to the right, rules that branch too widely will become too large, and in general
the structure of the tree will quickly become difficult to follow in the mass of text.

7.4.2 The Implementation
The current implementation of the Rule Language is not affected by the above
considerations, since the mapping, however difficult to read for humans, is unam-
biguously parseable. For the computer it does not matter how complex the rule
is — it will always be possible to assemble a rule-tree for comparison with the
actual program tree.

7.4.3 Evaluation and Future Suggestions
The Rule Language works as a language, and as an interface to the transformation
system, but can be difficult to use for humans, as soon as the rules approach a
certain complexity, merely because of readability problems.

For future research we propose to view the Rule Language, similar to Vnus,
primarily as an intermediate language for machine use. A higher-level represen-
tation is needed to further hide the structural complexity of the Rule Language
from the programmer. Considering the above-mentioned aspects, a possible av-
enue to explore for a more user-friendly Rule Language can be that of a graphical
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language.
If we have a language that works on trees and tree fragments, the programmer

should be able to actually work with those trees and tree fragments. A combina-
tion of graphical editor and folding editor could be written, where entire branches
of a tree can be collapsed or expanded, and conditions or code or actions attached
to individual nodes. The resulting graphical program would be represented as a
conventional Rule Language program, and should purely be seen as an interface
on top of the language.

It would also be advisable to base such a language from scratch on a more
sound theoretical basis than has been the case for the more ad-hoc Rule Language.

7.5 Portability of the Implementation

7.5.1 The Design
Since the Rule Language is mostly self-contained, there are few portability issues
at the language level. The only direct interface to the outside world is through
the embedded code. This does mean that the Rule Language is dependent on
the existence of C++ to be usable on a certain platform, and may be affected by
differences at that level.

However, the connection between the Rule Language and the embedded code
has purposely been kept weak, so that should the need arise it would be trivial
to allow embedded code in other languages as well. This would of course have
severe implications for the implementation of the system, and all existing rules
using embedded code would have to be rewritten, but the language as such would
not be affected.

7.5.2 The Implementation
The Rotan system is implemented in C++, and only uses auxiliary tools that them-
selves are written in C or C++. The resulting portability of the entire system has
proved itself useful many times. The original implementation of the rule system,
which was on Sun 3 and Apollo workstations, has since then been successfully,
and with a minimum of effort, been ported to different hardware platforms (HPs,
SPARCstations, Intel processors) running different operating systems (HPUX,
SunOS, Solaris, and various flavours of Linux).

For reasons of portability it was also decided at an early stage not to use
any third-party libraries or classes, but develop all support classes in-house. In
retrospect, this was an unfortunate decision. Support classes are not trivial to
write, and have, rather then helping us remain portable, caused more portability
problems by themselves than anything else in the system. Over the last few years
the C++ language has evolved considerably as well, and for instance the emergence
of the Standard C++ Template Library eliminates the very need for most of these
support classes (strings, lists, arrays, etc.).
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So although we have taken care to ensure that the portability of the system has
never been compromised, it should be noticed that most of the code has become
dated in the sense that we are not making use of the more recent developments
in both the language and the language support.

7.5.3 Evaluation and Future Suggestions
On the whole, using C++ as an implementation vehicle has been successful. Al-
though the core of the transformation system is portable and well-written, the
support classes are still riddled with legacy code, which has had detrimental effects
on the quality of the rest of the system as well.

A new version of the system would be a solution, and C++ would still be an
acceptable implementation language. The implementation of the core transform-
ation engine could for the larger part remain identical, but a rewrite from the
ground up, incorporating the latest C++ language constructs and support librar-
ies, should result in increased maintainability, as well as in substantial code size
reduction.

7.6 Performance of the System in Time and Space

7.6.1 The Design
Performance of the Rotan system itself (as opposed to the performance of the
programs created in it) has only been a secondary design goal, both in terms of
execution speed and in terms of memory usage. There have been a few exceptions:

Compiled rules. During the early phase of the project, a version of the rule
system was created in which rules were compiled out into direct C++ code,
rather than interpreted. Eventually, the problems associated with main-
taining two nearly identical versions of the system became too bothersome,
while the speed gains, if any, were not noticeable at all to the user.

Partial treewalks. We also experimented with an addition to the Rule Lan-
guage, where specific rules were given more information about the types of
nodes they were applicable to, thus making it possible for the system to
skip certain parts of the program tree during attempts to match or fire a
rule. This experiment was successful in concept, but the implementation
was not considered stable or elegant enough to be retained or developed
further afterwards.

Reuse semantics for rule variables. As was mentioned earlier, the use of rule
variables in action patterns is implemented as a pointer copy, not as a tree
copy. This decision was at least partly made because of memory considera-
tions.
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7.6.2 The Implementation

As mentioned, the Rule Language is an interpreted language, and will there-
fore never be a speed demon. In practice, application of even the largest set
of transformation rules to our largest program has generally been so fast (on a
350 MHz Pentium-PC programs such as our matrix multiplication test case com-
pile in a matter of seconds, and even the largest test program takes no longer
than a minute) that no need for further development in this area was perceived.
Similarly, the workstations on which development has taken place were also well-
equipped in memory, and no problems in that area were ever encountered, despite
the fact that the implementation of the rule system allocates a large number of
class instances — and hardly ever releases any of them before the program ends.
For truly complex programs, scalability and performance may become more of an
issue, however.

7.6.3 Evaluation and Future Suggestions

Performance and memory usage are currently not a problem, but the boundaries
are being reached, and a future implementation of the Rule Language should take
care to get the memory allocation right from the start, if only because this will
lead to greater program stability. If performance ever becomes a problem, then
both performance enhancements, compilable rules and pruned treewalks, could
be reimplemented.

A different approach would be to take advantage of parallelism and actually
execute rules in parallel (see for instance the Parlanse language [Bax97]). The
Rule Language would have to be extended for this to work — whether or not rules
can be executed in parallel is difficult to find out by analysis alone, considering
the effects of embedded code. Presumably new language constructs (for instance
in the form of pragmas and annotations) could be used to support this.

7.7 Development Environment and Support Tools

7.7.1 The Design

By far the least developed area of the current Rotan system is the support envir-
onment used for interactively writing, testing, and debugging rules. The current
environment, known as rcc, consists of a simple command line environment with
support for actions such as loading and displaying programs; and loading, dis-
playing, and applying rules. In combination with a decent editor such as emacs
this was sufficient to develop the rules used in this thesis, but this environment
would not be of much use to a novice rule programmer.
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7.7.2 The Implementation

The current implementation of rcc, as the rest of the rule system, is in portable
C++, and can be used a basis for a new version. The ultimate solution would be
to create a proper graphically-oriented environment (mouse, windows, etc.), but
the complete list of requirements for such an environment is beyond the scope of
this thesis.

Failing the availability of the resources for such an extensive redesign, a future
version of the rule system could retain the command line interface, but should
at the very least incorporate support for proper command line history, for the
handling of command line editing keys, for scrolling through files larger than
the current display, and for batch processing of rules (in effect implementing a
command-line compiler version next to the interactive version).

Support for different domains is adequately present, but the feedback towards
the user can still be much improved.

7.7.3 Evaluation and Future Suggestions

The current environment is more than adequate for a prototype, experimental
version.

7.8 Comparison with Timber
The Timber compiler [Ree03a; Ree03b], like the Rotan system, was developed by
the Parallel and Distributed Systems group at the Delft University of Technology.
There are both similarities and differences between the two systems, which makes
it interesting to compare and contrast them.

One difference is that Timber has seen more development effort and iterations
over the years than was possible for Rotan. Where Rotan is very much still an
extended prototype, Timber is a much more mature system, that can, in the area
of optimisation, hold its own in comparison against commercial systems.

Another major difference is that Timber is a special-purpose compiler, dedic-
ated to the compilation of Spar/Java and the processing of Vnus program trees.
In contrast, Rotan is a more generic system, with the whole domain plug-in struc-
ture designed to easily accommodate other languages and formats. The instanti-
ated Rotan compiler for Vnus described in Chapter 5, however, basically covers a
sizable subset of the compilation and optimisation trail that Timber implements,
and is therefore quite comparable, as we have already seen in Chapter 6.

Another similarity that has already been mentioned is that both Timber and
Rotan (instantiated for Vnus) use the same frontend, backend, and run-time
system libraries (albeit frozen older versions in the case of Rotan), and that both
systems make extensive use of the Tm Template Manager [Ree03b] to describe
data structures and to generate code. Both systems also use rewrite rules to
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implement the actual program tree transformation, but this is where the two
systems are both very different and very similar.

• The similarity lies in the fact that during the development of the two sets
of rules there has been a large amount of mutual design and code sharing.
The Rotan project predates the Timber project considerably, and the first
set of Timber rules were based on the already existing Rotan rules. Later
on, after progress on Timber picked up speed and surpassed the by then
stabilised Rotan system, some (but by no means all) of the newer rules and
algorithms implemented for Timber were ported to the Rotan ruleset.

• The difference lies in the implementation of the rules themselves. Rotan
uses the Rule Language, Timber chose a more low-level approach, in which
Tm templates are used by the compiler builder to generate treewalkers for
analysis and transformation purposes.

The Tm treewalkers offer an interesting way to process a parse tree node by
node. The action to be performed on each type of node is explicitly specified
by the programmer, but the code necessary to traverse the tree and ensure that
all instances of the target nodes are visited (and the action code subsequently
applied) is generated. The user specifies a list of all the node types that are
to be visited, the action functions for all these node types, and some macros
for generating signatures and invocations of the walker functions. From this
information Tm computes the appropriate walkers. By letting the user specify
the signature and the action of the walker functions, arbitrary information can
be passed into or accumulated during the tree walk. Tree walkers are similar in
concept to the Visitor pattern in object-oriented programming.

We can compare the Rotan and Timber approaches to compilation based on
the aspects used earlier in this chapter to evaluate Rotan itself in a more absolute
sense.

Applicability to different domains. Rotan was designed and has been proven
to easily accommodate different languages/domains. Although the Timber
infrastructure is well-designed and modular, and much of it has been re-
used in other projects, Timber was never intended to be a general-purpose
transformation system.

Applicability of embedded code. Timber stays much closer to the C++ level
than Rotan does. In Rotan, rules are composed in the Rule Language, and
embedded code is used when necessary, but is basically to be avoided as
much as possible. In Timber , the Tm templates are themselves C++ code
expanded with special directives in Tm’s template language. The genera-
tion of infrastructural code is handled (and hidden from sight) as much as
possible, but all the actual visitor code is expressed directly in C++. The
Timber compiler uses not only the custom treewalkers, but also various
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standard templates (that generate C code) for data structure manipulation
and administration. In total, the Timber system consists of about 26%
handwritten code, 39% code generated by Tm’s standard templates, 34%
code generated by the custom Tm treewalkers and analysers, and 1% re-
maining code generated by yacc.

Expressive power. Both systems are equally powerful in the sense that both
can use handwritten C++ to the full extent necessary. In terms of the
abstractions offered, however, Timber offers more complex infrastructural
functionality than Rotan. In the Rule Language escaping to C++ is the only
solution if something is not provided by the Rule Language itself, and as
there is no further support beyond the escape to lower-level code itself, the
compiler builder is left with nothing more than a data structure to work
with. The closer link of the Tm templates to the C++ code, however, means
that while support for things such as tree-traversal is not as hidden away
from sight as in Rotan, there is also more support available for creating
new functionality more or less from scratch. In essence, Timber ’s express-
ive power takes place at a lower level of abstraction than Rotan’s, making
development easier for the programmer who needs to work at that level,
whereas Rotan’s expressive power lies in the higher level.

Readability. Readability will always be a partially subjective evaluation, but as
can be deduced from the previous point, the higher abstraction level of the
Rule Language does make Rotan rules easier to read than Timber rules, in
the same way that C programs are easier to comprehend than assembler
programs.

Portability of the implementation. Both systems, including their supporting
environments, are written using standard, portable ANSI C and C++. There
are no relevant differences here.

Performance of the system in time and space. The Rotan system is a re-
search prototype, and the performance of the system itself was always a
secondary concern. Timber , while also used mostly for research purposes, is
an actual released system, that has been the recipient of a sustained nearly
full-time development effort spanning more than seven years time. It is no
wonder that the performance of Timber , specifically the performance of the
application of rules, is significantly better than that of Rotan.

Development environment and support tools. Although the Rotan devel-
opment environment is fairly rudimentary, it is an improvement over the
Timber situation, where there really no special support for writing or de-
bugging rules, beyond that what the C++ and Tm environments offer —
which is so generic in nature that it will not specifically help anybody trying
to develop transformations at that same level of abstraction. Timber does,
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however, have support for establishing and performing regression tests that
is lacking in Rotan.

Both Rotan and Timber clearly illustrate that rule-based compilation sys-
tems for data-parallel languages are a superior alternative to systems that confine
themselves to the implementation language’s level of abstraction. Whether the
rule-based compilation is achieved through something as high-level as a separate
rule language, or something a bit less abstract such as template-based meta-
programming, is secondary to this primary observation.

Timber ’s template-based lower-level support makes it more generically power-
ful, and the system is certainly more polished in its implementation than Rotan.
However, daily practice with writing, maintaining, and understanding rules for
both systems has shown that Rotan’s support for higher levels of abstraction
(via the domains and the Rule Language) is a very strong point in its favour,
leading to quicker development, better readability, and easier maintainability and
expandability of rules than is the case for equivalent Timber rules.

In the next, final chapter of this thesis we will summarise and conclude our
evaluation of Rotan and the research presented so far.





Chapter 8
Conclusion

8.1 Discussion

It has been argued (e.g. in [Paa92]) that a valid approach towards solving the
‘parallel programming problem’ as described in Chapter 1 lies in the creation of
high-level parallel programming languages that abstract away from the underlying
complexity of parallel hardware and programming models. A direct corollary of
this is that the compiler technology used to translate such languages also has to
evolve in order to meet the increased demands for extracting efficient parallelism
from these higher-level specifications.

The work presented in this thesis shows that a programmable, rule-based
compiler based on a high-level transformation system is in turn a fruitful way of
implementing this evolution, at least for the field of data parallelism (Chapter 2).
By having the compilation system itself make a leap towards a higher abstraction
level, so that various complex transformations can be expressed in a way that is
lucid and modular, we can substantially increase a compiler’s own maintainabil-
ity, efficiency and power. The Rotan system, with its associated Rule Language
(Chapters 3 and 4) forms the prototype system serving as an implementation
vehicle for our research into creating an optimising compiler for the Vnus inter-
mediate language (Chapter 5).

The question whether the programmable compiler’s own increased abstraction
level sacrifices the efficiency of the code it generates is an important one. The per-
formance benchmarks and comparisons with other compilation systems presented
in Chapter 6 suggest that it does, but only to a quite acceptable extent. The
parallel code generated by Rotan is about 2–8 times slower than that generated
by more professional systems, but these slowdowns can generally be traced and
attributed to specific causes (such as e.g. a limited backend implementation, or an
as-yet missing optimisation) that do not imply inherent deficiencies of the trans-
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formation system. In contrast, the shortened development time for new rules,
their general expressive power, and their maintainability are strong advantages to
frameworks such as Rotan (Chapter 7).

8.2 Future Work
There are many interesting directions in which future research on programmable
compilers can be taken.

From a practical viewpoint, the current Rotan system can be expanded to
remove a number of its limitations and improve its general capabilities and use-
fulness. The Rule Language can be extended with support for constructs such as
re-entrant rules and flow-control (see also Chapter 7). It would also be valuable
to allow programmers the possibility to explicitly specify custom tree-traversal
strategies, rather than be limited to the three options currently available. An-
other interesting option would be to offer a more direct programming interface
(expressed in high-level Rule Language constructs) to an underlying template-
based code-generating mechanism (à la Tm). In effect this could unlock and
incorporate an intermediate level of rule-programming that lies between the Rule
Language at the top and the completely unchecked embedded code at the bottom.

Only lightly touched upon in this thesis is the fact that the intermediate lan-
guage Vnus is formally defined with a corresponding calculus for reasoning about
Vnus programs ([Dec98]). It is a logical extension of this theoretical basis that we
might also wish to reason about transformations applied to a Vnus tree, and for
instance prove the semantics-preserving aspect of a given transformation. This
can lead not only to an additional level of confidence in Rotan/Vnus-based com-
pilation systems beyond that offered by traditional systems based on a more ad
hoc intermediate format, but it also opens the way for allowing Rotan support
based on these more theoretical aspects of Vnus.1 There already is a large body
of scientific work available on the subject of generic transformation verification
mechanisms, and it would be an interesting challenge to investigate ways of in-
corporating this research into a next-generation Rotan framework.

1Imagine a compilation system that warns the programmer if a rule just entered is not
semantics-preserving. Even if it worked for trivial rules only, this could already be a valuable
development aid.



Appendix A
Rule Language Grammar

This appendix specifies the grammar of the Rule Language.

Conventions
• Rule Language reserved words and literal tokens (including punctuation)

are in boldface courier ;

• Non-terminals are in italics;

• Grammar meta-symbols are in courier typeface ;

• The Rule Language is case insensitive.

Rule Module Definition
rulemodule:

precedencesopt rulelist propertiesopt

precedences:
prec engine engineId driver driverId begin ruleIdlist end.

prec engine engineId begin ruleIdlist end.

prec begin ruleIdlist end.

properties:
engine engineId reap

engine engineId driver driverId reap

rule:
ruleHeader ruleBody
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ruleHeader :
rule ruleName from driverName in engineName typesopt helptextopt

types:
types typeIdlist

helptext :
help stringLiteral

ruleBody :
begin applicationModeopt conditionPattern -> actionPattern end.

applicationMode:
once

cont

continuous

reap

reapplication

Condition & Action Patterns
conditionPattern:

conditionNode
expr
list

actionPattern:
actionNode
expr
list

conditionNode:
nonOperatorId conditionWhereopt codeopt

actionNode:
nonOperatorId conditionWhereopt codeopt

conditionWhere:
[ conditionClause ]

actionWhere:
[ actionClause ]

conditionClause:
conditionClause and conditionClause
conditionClause or conditionClause
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not conditionClause
( conditionClause )

contains conditionPattern
attributeId contains conditionPattern
attributeId matches conditionPattern
comparand relationOp comparand
rulevar = attribute
rulevar = rulevar

comparand :
attribute
$rulevarId
stringConst
intConst

actionClause:
actionClause and actionClause
becomesClause

becomesClause:
attributeId = actionPattern
$rulevar = actionPattern

code:
string

Expressions
expr :

parenthesisExpr
anyNode
operatorId
operatorId enclosedExprOrTerm
closedExprOrTerm operatorId closedExprOrTerm

parenthesisExpr :
( expr ) actionWhere codeopt
( expr ) condWhere codeopt

closedExprOrTerm:
parenthesisExpr
term
anyNode

exprOrTerm:
expr
term
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term:
node
anyNode
leafNode
enclosedList

anyNode:
any rulevarAssignmentopt condWhere codeopt
any rulevarAssignmentopt actionWhere codeopt

leafNode:
leaf rulevarAssignmentopt actionWhere codeopt

rulevarAssignment :
. rulevar

Lists
list :

enclosedList
openList

enclosedList :
< listElementlist > rulevarAssignmentopt actionWhereopt codeopt
< listElementlist > rulevarAssignmentopt condWhereopt codeopt

openList :
listElement listElementlist
listElementlist
...

listElement :
listElementlist
...

listElement | listElement
node
< listElementlist > rulevarAssignmentopt actionWhereopt codeopt
< listElementlist > rulevarAssignmentopt condWhereopt codeopt
< expr > rulevarAssignmentopt actionWhereopt codeopt
< expr > rulevarAssignmentopt condWhereopt codeopt
enclosedList

Tokens
relationOp: one of

== != < > <= >=
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keyword: one of
and any begin cont contains continuous driver end engine
from help in leaf matches noleaf not once op operator or
prec reap reapplication rule types

Lexical Entities
In the productions in this section, whitespace is significant.

stringLiteral :
" stringChars "

stringChars:
stringChar
stringChars stringChar

stringChar :
any character except "

identifier :
identifierChars but not a keyword

identifierChars:
letter
identifierChars letter
identifierChars digit

letter: one of
_ a b c d e f g h i j k l m n o p q r s t u v w x y z A B
C D E F G H I J K L M N O P Q R S T U V W X Y Z

intNumber :
signopt digits

digits:
digit
digits digit

digit: one of
1 2 3 4 5 6 7 8 9

sign: one of
+ -





Appendix B
Vnus Grammar

This appendix specifies the grammar of Vnus, and is reproduced here from [Ree00b]
with the author’s permission.

Program
program:

program globalPragmasopt declarations block

Declarations
declarations:

declarations [ declarationlist ]

declaration:
routineDeclaration
variableDeclaration
typeDeclaration

routineDeclaration:
functionDeclaration
procedureDeclaration
externalFunctionDeclaration
externalProcedureDeclaration

variableDeclaration:
globalVariableDeclaration
externalVariableDeclaration
cardinalityVariableDeclaration
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localVariableDeclaration
formalVariableDeclaration

typeDeclaration:
recordDeclaration

globalVariableDeclaration:
globalvariable identifier type expressionopt modifiersopt pragmasopt

functionDeclaration:
function identifier formalParameters identifier type modifiersopt
pragmasopt block

procedureDeclaration:
procedure identifier formalParameters modifiersopt pragmasopt block

localVariableDeclaration:
localvariable identifier scopename type expressionopt modifiersopt
pragmasopt

formalVariableDeclaration:
formalvariable identifier scopename type modifiersopt pragmasopt

cardinalityVariableDeclaration:
cardinalityvariable identifier modifiersopt pragmasopt

externalVariableDeclaration:
externalvariable identifier type modifiersopt pragmasopt

externalFunctionDeclaration:
externalfunction identifier formalParameters type modifiersopt
pragmasopt

externalProcedureDeclaration:
externalprocedure identifier formalParameters modifiersopt pragmas
opt

recordDeclaration:
record identifier [ fieldList ] modifiersopt pragmasopt

modifiers:
modifier
modifiers modifier

modifier: one of
const local unchecked volatile



VNUS GRAMMAR 129

block :
statements scopenameopt pragmasopt [ labeledStatementlist ]

labeledStatement :
labelopt pragmasopt statement

statement :
imperative
control
parallelization
communication
memoryManagement
support

formalParameters:
[ formalParameterlist ]

formalParameter :
identifier

Flow of Control
control :

while
dowhile
for
if
block
switch
return
valueReturn
goto
throw
rethrow
catch

while:
while expression block

dowhile:
dowhile expression block

for :
for cardinalities block
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if :
if expression block block

switch:
switch expression [ switchCaselist ]

return:
return

valueReturn:
return expression

goto:
goto labelName

throw :
throw expression

rethrow :
rethrow

catch:
catch formalParameter block block

switchCase:
( intLiteral , block )
( default , block )

cardinalities:
[ cardinalitylist ]

cardinality :
identifier : expression

Parallelization
parallelization:

forall
forkall
fork
foreach
each

forall :
forall cardinalities block
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forkall :
forkall cardinalities block

fork :
fork [ statementlist ]

foreach:
foreach cardinalities block

each:
each [ statementlist ]

Communication

communication:
barrier
signal
wait
send
receive
blockSend
blockReceive

barrier :
barrier

wait :
wait expression

signal :
signal expression

send :
send expression expression

receive:
receive expression location

blockSend :
blocksend expression expression expression

blockReceive:
blockreceive expression location location
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Imperative
imperative:

assignment
procedureCall
setSize
setRoom
fitRoom

assignment :
assign location expression

procedureCall :
procedurecall routineExpression actualParameters

setSize:
setsize location sizes

setRoom:
setroom location expression

fitRoom:
fitroom location

routineExpression:
identifier
* expression

Memory Management
memoryManagement :

delete
garbageCollect

delete:
delete expression

garbageCollect :
garbagecollect

Support Statements
support :

empty
print
println
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empty :
empty

print :
print actualParameters

println:
println actualParameters

Expressions and Locations
location:

identifier
field expression identifier
selectionLocation
expressionpragma pragmas location
* expression
where scopename location

selectionLocation:
( expression , selectors )

expression:
literalExpression
accessExpression
constructorExpression
operatorExpression
shapeInfoExpression
miscellaneousExpression

literalExpression:
byteLiteral
shortLiteral
intLiteral
longLiteral
floatLiteral
doubleLiteral
charLiteral
booleanLiteral
stringLiteral
nullLiteral

accessExpression:
identifier
( expression , selectors )
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field expression identifier
* expression
functioncall routineExpression actualParameters

constructorExpression:
complex expression expression
shape sizes type [ expressionlist ]
record [ expressionlist ]
& location
new type
fillednew type expression

operatorExpression:
cast type expression
if expression expression expression
where scopename expression
( unaryOperator , expression )
( expression , binaryOperator , expression )

shapeInfoExpression:
ismultidimdist expression
getblocksize expression expression
getsize expression expression
getlength expression
getroom expression
sender location
owner location
isowner location expression

miscellaneousExpression:
expressionpragma pragmas expression
israised expression

selectors:
[ selectorlist ]

selector :
expression

actualParameters:
[ actualParameterlist ]

actualParameter :
expression
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distributions:
[ distributionlist ]

distribution:
dontcare
block
cyclic
blockcyclic expression
replicated
collapsed
local expression

type:
baseType
shape sizes distributionsopt type
record [ fieldlist ] pointer type
procedure [ typelist ]
function [ typelist ] type

baseType: one of
string boolean byte short int long float double char
complex

field :
identifier : type

sizes:
[ sizelist ]

size:
dontcare
expression

Miscellaneous
scopename:

identifier

label :
labelName :

labelName:
identifier

globalPragmas:
pragma pragmas
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pragmas:
[ pragmalist ]

pragma:
identifier
identifier = PragmaExpression

PragmaExpression:
LiteralPragmaExpression
NamePragmaExpression
ListPragmaExpression

LiteralPragmaExpression:
intLiteral
floatLiteral
doubleLiteral
stringLiteral
booleanLiteral

NamePragmaExpression:
identifier
@identifier

ListPragmaExpression:
( PragmaExpressions )

PragmaExpressions:
empty
PragmaExpressions PragmaExpression

Tokens
unaryOperator: one of

not + ˜

binaryOperator: one of
* + - / < << <= <> = > >= >> >>> and mod or xor

booleanLiteral: one of
true false
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nullLiteral :
null

keyword: one of
and assignment barrier block blockcyclic
blockreceive blocksend boolean byte
cardinalityvariable catch collapsed complex
cyclic declarations delete dontcare double each
empty expression expressionpragma expressions
externalfunction externalprocedure externalvariable
false field fillednew fitroom flag float forall
foreach fork forkall formalvariable function
functioncall garbagecollect getblocksize getlength
getsize globalvariable goto if integer isowner
iteration local localvariable long mod new not null
or owner pointer pragma print println procedure
procedurecall program receive replicated rethrow
return send sender setroom setsize shape short
statements string switch throw true value while xor

Lexical Entities
In the productions in this section, whitespace is significant.

byteLiteral :
intNumber byteSuffix

byteSuffix: one of
b B

shortLiteral :
intNumber shortSuffix

shortSuffix: one of
s S

intLiteral :
intNumber
intNumber intSuffix

intSuffix: one of
i I
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longLiteral :
intNumber longSuffix

longSuffix: one of
l L

floatLiteral :
floatNumber
floatNumber floatSuffix

floatSuffix: one of
f F

doubleLiteral :
floatNumber doubleSuffix

doubleSuffix: one of
d D

charLiteral :
’ char ’

stringLiteral :
" stringChars "

stringChars:
stringChar
stringChars stringChar

stringChar :
any char except an unescaped ‘" ’

identifier :
identifierChars but not a keyword

identifierChars:
letter
identifierChars letter
identifierChars digit

letter: one of
_ a b c d e f g h i j k l m n o p q r s t u v w x y
z A B C D E F G H I J K L M N O P Q R S T U V W X Y
Z
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floatNumber :
signopt digits floatExponent
signopt . digits floatExponentopt
signopt digits . digitsopt floatExponentopt

floatExponent :
exponentIndicator signopt digits

exponentIndicator: one of
e E

intNumber :
signopt digits

digits:
digit
digits digit

digit: one of
0 1 2 3 4 5 6 7 8 9

sign: one of
+ -

char :
any character
escapedCharacter

escapedCharacter :
\b
\f
\n
\r
\t
\"
\\
\ digit
\ digit digit
\ digit digit digit





Appendix C
Vnus Domain Definition

This is the Tm domain file for Vnus, used to generate an instantiation of the
Rotan framework specific to the Vnus language. All the transformation rules
used in the compiler described in Chapter 5 are expressed in terms of identifiers
and relationships originating in this file. How this file is used by Tm is explained
in Chapter 3.

|| vnus.ds - Domain definition file for Vnus
||
|| Data structures describing the intermediate
|| programming language Vnus.

NObject == object + (status:String);

Vnusprog == NObject +
(pragmas:[Pragma],
declarations:[Declaration],
statements:Block);

|| Symbol table entries.

Declaration == NObject +
(name:String,
flags:[Modifier],
pragmas:[Pragma]);

RoutineDeclaration == Declaration +
(parms:[String]);

BlockRoutineDeclaration == RoutineDeclaration +
(body:Block);

DeclFunction == BlockRoutineDeclaration +
(rettype:Type);

DeclProcedure == BlockRoutineDeclaration + ();
DeclExternalFunction == RoutineDeclaration +

(rettype:Type);
DeclExternalProcedure == RoutineDeclaration + ();
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VariableDeclaration == Declaration + ();
DeclGlobalVariable == VariableDeclaration +

(t:Type,
init:Expression);

DeclLocalVariable == VariableDeclaration +
(scope:String,
t:Type,
init:Expression);

DeclFormalVariable == VariableDeclaration +
(scope:String,
t:Type);

DeclCardinalityVariable == VariableDeclaration + ();
DeclExternalVariable == VariableDeclaration +

(t:Type);

TypeDeclaration == Declaration + ();
DeclRecord == TypeDeclaration +

(fields:[Field]);

|| Statements and related structures.

Block == NObject +
(scope:String,
statements:[LabeledStatement]);

SwitchCase == NObject +
(body:Block);

SwitchCaseValue == SwitchCase +
(cond:Int);

SwitchCaseDefault == SwitchCase + ();

Statement == NObject +
(label:String,
pragmas:[Pragma]);

LabeledStatement == Statement + ();

Imperative == LabeledStatement + ();
SmtAssign == Imperative +

(lhs:Location,
rhs:Expression);

SmtProcedureCall == Imperative +
(proc:Expression,
parameters:[Expression]);

SmtExpression == Imperative +
(x:Expression);

SmtSetSize == Imperative +
(shape:Location,
sizes:[Size]);

SmtSetRoom == Imperative +
(shape:Location,
sz:Expression);

SmtFitRoom == Imperative +
(shape:Location);

Control == LabeledStatement + ();
SmtWhile == Control +

(cond:Expression,
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body:Block);
SmtDoWhile == Control +

(cond:Expression,
body:Block);

SmtFor == Control +
(cards:[Cardinality],
body:Block);

SmtIf == Control +
(cond:Expression,
thenbody:Block,
elsebody:Block);

SmtBlock == Control +
(body:Block);

SmtSwitch == Control +
(cond:Expression,
cases:[SwitchCase]);

SmtReturn == Control + ();
SmtValueReturn == Control +

(v:Expression);
SmtGoto == Control +

(target:String);
SmtThrow == Control +

(elm:Expression);
SmtRethrow == Control + ();
SmtCatch == Control +

(elm:String,
body:Block,
handler:Block);

Parallelization == LabeledStatement + ();
SmtForall == Parallelization +

(cards:[Cardinality],
body:Block);

SmtForkall == Parallelization +
(cards:[Cardinality],
body:Block);

SmtFork == Parallelization +
(body:Block);

SmtForeach == Parallelization +
(cards:[Cardinality],
body:Block);

SmtEach == Parallelization +
(body:Block);

Semaphores == LabeledStatement + ();
SmtSignal == Semaphores +

(var:Expression);
SmtWait == Semaphores +

(var:Expression);

Communication == LabeledStatement + ();
SmtBarrier == Communication + ();
SmtWaitPending == Communication + ();
SmtSend == Communication +

(dest:Expression,
elm:Expression);

SmtReceive == Communication +
(src:Expression,
elm:Location);

SmtBlocksend == Communication +
(dest:Expression,
buf:Expression,
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nelm:Expression);
SmtBlockreceive == Communication +

(src:Expression,
buf:Expression,
nelm:Expression);

SmtASend == Communication +
(dest:Expression,
elm:Expression);

SmtAReceive == Communication +
(src:Expression,
elm:Location);

SmtABlocksend == Communication +
(dest:Expression,
buf:Expression,
nelm:Expression);

SmtABlockreceive == Communication +
(src:Expression,
buf:Expression,
nelm:Expression);

MemoryManagement == LabeledStatement + ();
SmtDelete == MemoryManagement +

(adr:Expression);
SmtGarbageCollect == MemoryManagement + ();

Support == LabeledStatement + ();
SmtEmpty == Support + ();
SmtPrintSupport == Support +

(argv:[Expression]);
SmtPrint == SmtPrintSupport + ();
SmtPrintLn == SmtPrintSupport + ();

Size == NObject + ();
SizeDontcare == Size + ();
SizeExpression == Size +

(x:Expression);

Distribution == NObject + ();
DistDontcare == Distribution + ();
DistBlock == Distribution + ();
DistCyclic == Distribution + ();
DistBC == Distribution +

(blocksize:Expression);
DistReplicated == Distribution + ();
DistCollapsed == Distribution + ();
DistLocal == Distribution +

(proc:Expression);

|| Data types.

Type == NObject + ();

TypeBase == Type + ();
TypeShape == Type +

(sizes:[Size],
distr:[Distribution],
elmtype:Type);

TypePointer == Type +
(elmtype:Type);

TypeRecord == Type +
(fields:[Field]);
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TypeNamedRecord == Type +
(name:String);

RoutineType == Type +
(formals:[Type]);

TypeProcedure == RoutineType + ();
TypeFunction == RoutineType +

(rettype:Type);
TypePragmas == Type +

(pragmas:[Pragma],
t:Type);

Field == NObject +
(name:String,
elmtype:Type);

|| A cardinality - a variable that iterates over a given range, with
|| a given stride. Contrary to many other range notations, the stride
|| should not be negative.
Cardinality == NObject +

(name:String,
lowerbound:Expression,
upperbound:Expression,
stride:Expression,
secondaries:[Secondary]);

|| A secondary - a variable that follows a cardinality
Secondary == NObject +

(name:String,
lowerbound:Expression,
stride:Expression);

Location == NObject +
(pragmas:[Pragma]);

LocName == Location +
(name:String);

LocField == Location +
(rec:Expression,
fld:String);

LocFieldNumber == Location +
(rec:Expression,
fld:Int);

LocSelection == Location +
(shape:Expression,
indices:[Expression]);

LocDeref == Location +
(ref:Expression);

LocWhere == Location +
(scope:String,
l:Location);

|| Vnus expressions.

OptExprNone == LiteralExpression + ();

Expression == NObject +
(pragmas:[Pragma]);

|| Various types of literals.
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LiteralExpression == Expression +
(content:String);

ExprByte == LiteralExpression + ();
ExprShort == LiteralExpression + ();
ExprInt == LiteralExpression + ();
ExprLong == LiteralExpression + ();
ExprFloat == LiteralExpression + ();
ExprDouble == LiteralExpression + ();
ExprChar == LiteralExpression + ();
ExprBoolean == LiteralExpression + ();
ExprString == LiteralExpression + ();
ExprNull == Expression + ();

AccessExpression == Expression + ();
ExprName == AccessExpression +

(name:String);
ExprSelection == AccessExpression +

(shape:Expression,
indices:[Expression]);

ExprField == AccessExpression +
(rec:Expression,
fld:String);

ExprFieldNumber == AccessExpression +
(rec:Expression,
fld:Int);

ExprDeref == AccessExpression +
(ref:Expression);

ExprFunctionCall == AccessExpression +
(function:Expression,
parameters:[Expression]);

ConstructorExpression == Expression + ();
ExprComplex == ConstructorExpression +

(re:Expression,
im:Expression);

ExprShape == ConstructorExpression +
(sizes:[Size],
elmtype:Type,
arr:[Expression]);

ExprRecord == ConstructorExpression +
(fields:[Expression]);

ExprAddress == ConstructorExpression +
(adr:Location);

ExprNew == ConstructorExpression +
(t:Type);

ExprFilledNew == ConstructorExpression +
(t:Type,
init:Expression);

OperatorExpression == Expression + ();
ExprCast == OperatorExpression +

(t:Type,
x:Expression);

ExprIf == OperatorExpression +
(cond:Expression,
thenval:Expression,
elseval:Expression);

ExprWhere == OperatorExpression +
(scope:String,
x:Expression);

ExprUnop == OperatorExpression +
(optor:Operator,
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operand:Expression);
ExprBinop == OperatorExpression +

(optor:Operator,
operanda:Expression,
operandb:Expression);

ExprShapeInfoExpression == Expression + ();
ExprIsMultidimDist == ExprShapeInfoExpression +

(shape:Expression);
ExprGetBlocksize == ExprShapeInfoExpression +

(shape:Expression,
dim:Expression);

ExprGetSize == ExprShapeInfoExpression +
(shape:Expression,
dim:Expression);

ExprGetLength == ExprShapeInfoExpression +
(shape:Expression);

ExprGetRoom == ExprShapeInfoExpression +
(shape:Expression);

ExprSender == ExprShapeInfoExpression +
(shape:Location);

ExprOwner == ExprShapeInfoExpression +
(shape:Location);

ExprIsOwner == ExprShapeInfoExpression +
(shape:Location,
proc:Expression);

AssertExpression == Expression +
(exception:Expression);

ExprNotNullAssert == AssertExpression +
(x:Expression);

MiscellaneousExpression == Expression + ();
ExprPragma == MiscellaneousExpression +

(prs:[Pragma],
x:Expression);

ExprIsRaised == MiscellaneousExpression +
(x:Expression);

|| Pragmas

Pragma == NObject +
(name:String);

FlagPragma == Pragma + ();
ValuePragma == Pragma +

(x:PragmaExpression);

PragmaExpression == NObject + ();

LiteralPragmaExpression == PragmaExpression + ();
NumberPragmaExpression == LiteralPragmaExpression +

(v:String);
StringPragmaExpression == LiteralPragmaExpression +

(s:String);
BooleanPragmaExpression == LiteralPragmaExpression +

(b:String);

SymbolPragmaExpression == PragmaExpression + ();
NamePragmaExpression == SymbolPragmaExpression +
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(name:String);
ExternalNamePragmaExpression == SymbolPragmaExpression +

(name:String);

ListPragmaExpression == PragmaExpression +
(l:[PragmaExpression]);

InternalPragma == Pragma + ();

XPragma == InternalPragma +
(x:Expression);

LocationPragma == InternalPragma +
(loc:Location);

ShapeLocationPragma == InternalPragma +
(dist:Distribution,
basetype:TypeBase,
fulltype:Type,
shape:String,
distdim:String);

SizePragma == InternalPragma +
(size:Expression);

RenamePragma == InternalPragma +
(from:String,

to:Expression);

CardsPragma == InternalPragma +
(cards:[Cardinality]);

Modifier == NObject + ();
Unchecked == Modifier + ();
Volatile == Modifier + ();
Const == Modifier + ();
Local == Modifier + ();

TypeString == TypeBase + ();
TypeBoolean == TypeBase + ();
TypeByte == TypeBase + ();
TypeShort == TypeBase + ();
TypeLong == TypeBase + ();
TypeInt == TypeBase + ();
TypeFloat == TypeBase + ();
TypeDouble == TypeBase + ();
TypeChar == TypeBase + ();
TypeComplex == TypeBase + ();

Operator == NObject + ();

OpBin == Operator + ();
OpAnd == OpBin + ();
OpOr == OpBin + ();
OpMod == OpBin + ();
OpPlus == OpBin + ();
OpMinus == OpBin + ();
OpTimes == OpBin + ();
OpDivide == OpBin + ();
OpEqual == OpBin + ();
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OpNotEqual == OpBin + ();
OpLess == OpBin + ();
OpLessEqual == OpBin + ();
OpGreater == OpBin + ();
OpGreaterEqual == OpBin + ();
OpXor == OpBin + ();
OpShiftleft == OpBin + ();
OpShiftright == OpBin + ();
OpUShiftright == OpBin + ();

OpUn == Operator + ();
OpUNot == OpUn + ();
OpUPlus == OpUn + ();
OpUNegate == OpUn + ();





Appendix D
Example Rule

A Rule for Communication Aggregation
This rule is one of the key rules in the Vnus Rotan compiler’s Optimisation phase,
as described in Section 5.4.1. It implements the actual aggregation sub-engine,
and is the largest rule in the entire compiler. It is included here to give a flavour for
Rule Language programming in a more complex form than seen in the examples
shown in the previous chapters.

The actual match pattern is still not that complex. The vast bulk of the rule
is made up of the specification of the communication template that will replace
the matched code. This specification consists of a fairly straightforward block-
by-block creation of a new abstract syntax tree (the complexity, of course, went
into coming up with the template for this new tree in the first place).

The embedded code used at the end of the rule is also simple in nature: it is
mostly concerned with generating unique identifiers for introduced new variables,
and with duplicating some of the matched sub-trees.

A full archive of the rules used in the Rotan Vnus compiler is available through
the Parallel and Distributed Systems group’s website at <http://www.pds.its.

tudelft.nl/ >.

RULE ca1 FROM ca IN CommunicationAggregation
HELP "Introduce explicit communication around subroutine communication statements"

BEGIN CONT

Vnusprog.PROG
[

CONTAINS DeclProcedure.PD
[

$PROCNAME = Name &&
Parms MATCHES < (...).PARMS String.CB > &&
CONTAINS Block
[

$SCOPE = Scope
&&
Statements MATCHES
<
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(...).XX
SmtForeach.F
[

Pragmas CONTAINS FlagPragma [ Name == "independent" ] &&
$C1 = Cards &&
Cards MATCHES < Cardinality.CARD1 [ $ID = Name && $UPB = Upperbound ] > &&
Body
[

Statements MATCHES
<

SmtAssign.A
[

Pragmas CONTAINS FlagPragma.FP [Name == "communication"] &&
Lhs MATCHES LocName [ $LNAME = Name ] &&
Rhs MATCHES ExprSelection.RSEL [ $RSELREF = Shape && $RSELSEL = Indices ] &&
$LHS = Lhs &&
$RHS = Rhs

]
>

]
]
(...).YY

>.LIST
]

]
&&
Declarations MATCHES < (...).DECLARATIONS > &&
Declarations CONTAINS Declaration.TEMPODECL
[

Name == $LNAME &&
CONTAINS TypeShape [ Sizes MATCHES < SizeExpression [ $SIZE = X ] > ] &&
CONTAINS TypeBase.BUFTYPE &&
CONTAINS LocationPragma [ $LSEL = Loc ]

]
]
->

Vnusprog.PROG
[

$LIST =
<

$XX

Block [ Scope = $SCOPE_1 && Statements =
<

SmtIf
[

Cond = ExprBinop
[

Optor = OpLess &&
Operanda = ExprGetSize

[
Shape = ExprName [ Name = $BUF ] &&
Dim = ExprInt [ Content = "0" ]

] &&
Operandb = $SIZE
]

&&
Thenbody = Block [ Scope = $SCOPE_2 && Statements =
<

SmtSetSize [ Shape = LocName [ Name = $BUF] && Sizes = < SizeExpression [ X = $SIZE ] > ]
>]

]

SmtForeach
[

Cards = < Cardinality [ Name = $CV_0 && Upperbound = ExprName [ Name = "numberOfProcessors" ] ] >
&&

Body = Block [ Scope = "no scopename" && Statements =
<

SmtIf
[

Cond = ExprBinop
[

Optor = OpNotEqual &&
Operanda = ExprName [ Name = $CV_0 ] &&
Operandb = ExprField

[
Rec = ExprDeref [ Ref = ExprName [ Name = $CB ] ] &&
Fld = "_p"

]
] &&
Thenbody = Block [ Scope = $SCOPE_4 && Statements =

<
SmtForeach
[
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Cards = < Cardinality [ Name = $CV_1 && Upperbound = $UPB ] > &&
Pragmas = < ValuePragma [ Name = "renamecardvar" &&

X = StringPragmaExpression [ S = $ID ] ]
> &&

Body = Block [ Scope = "no scopename" && Statements =
<

SmtIf
[

Cond = ExprBinop
[

Optor = OpAnd &&
Operanda = ExprIsOwner

[
Shape = $LHSCLONE &&
Proc = ExprName [ Name = $CV_0 ]

] &&
Operandb = ExprBinop

[
Optor = OpEqual &&
Operanda = ExprSender
[

Shape = LocSelection [ Shape = $RSELREFCLONE && Indices = $RSELSELCLONE ]
] &&

Operandb = ExprField
[

Rec = ExprDeref [ Ref = ExprName [ Name = $CB ] ] &&
Fld = "_p"

]
]

] &&
Thenbody = Block [ Scope = "no scopename" && Statements =
<

SmtAssign
[

Lhs = LocSelection
[

Shape = ExprName [ Name = $BUF ] &&
Indices = < ExprName [ Name = $NO1 ] >

] &&
Rhs = $RHSCLONE
]
SmtAssign

[
Lhs = LocName [ Name = $NO1 ] &&

Rhs = ExprBinop
[

Optor = OpPlus &&
Operanda = ExprName [ Name = $NO1 ] &&
Operandb = ExprInt [ Content = "1" ]

]
]

>]
]

>]
]

SmtIf
[

Cond = ExprBinop
[

Optor = OpNotEqual &&
Operanda = ExprName [ Name = $NO1 ] &&

Operandb = ExprInt [ Content = "0" ]
] &&
Thenbody = Block [ Scope = "no scopename" && Statements =

<
SmtBlocksend

[
Dest = ExprName [ Name = $CV_0 ] &&
Buf = ExprName [ Name = $BUF ] &&
Nelm = ExprName [ Name = $NO1 ]

]
>]

]
>]

]
>]

]

SmtForeach
[

Cards = < Cardinality [ Name = $CV_2 && Upperbound = ExprName [ Name = "numberOfProcessors" ] ] > &&
Body = Block [ Scope = "no scopename" && Statements =

<
SmtIf
[

Cond = ExprBinop
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[
Optor = OpNotEqual &&
Operanda = ExprName [ Name = $CV_2 ] &&
Operandb = ExprField

[
Rec = ExprDeref [ Ref = ExprName [ Name = $CB ] ] &&
Fld = "_p"

]
] &&
Thenbody = Block [ Scope = $SCOPE_5 && Statements =

<

SmtForeach
[

Cards = < Cardinality [ Name = $CV_3 && Upperbound = $UPB ] > &&
Pragmas = < ValuePragma [ Name = "renamecardvar" &&

X = StringPragmaExpression [ S = $ID ] ]
> &&

Body = Block [ Scope = "no scopename" && Statements =
<
SmtIf
[

Cond = ExprBinop
[

Optor = OpAnd &&
Operanda = ExprIsOwner

[
Shape = $LHSCLONE2 &&
Proc = ExprField
[

Rec = ExprDeref [ Ref = ExprName [ Name = $CB ] ] &&
Fld = "_p"

]
] &&

Operandb = ExprBinop
[

Optor = OpEqual &&
Operanda = ExprSender
[

Shape = LocSelection [ Shape = $RSELREFCLONE2 && Indices = $RSELSELCLONE2 ]
] &&
Operandb = ExprName [ Name = $CV_2 ]
]

] &&
Thenbody = Block [ Scope = "no scopename" && Statements =

<
SmtAssign
[

Lhs = LocName [ Name = $NORCVD ] &&
Rhs = ExprBinop
[

Optor = OpPlus &&
Operanda = ExprName [ Name = $NORCVD ] &&
Operandb = ExprInt [ Content = "1" ]
]

]
>]

]
>]

]

SmtIf
[

Cond = ExprBinop
[

Optor = OpNotEqual &&
Operanda = ExprName [ Name = $NORCVD ] &&
Operandb = ExprInt [ Content = "0" ]

] &&
Thenbody = Block [ Scope = "no scopename" && Statements =
<

SmtBlockreceive
[

Src = ExprName [ Name = $CV_2 ] &&
Buf = ExprName [ Name = $BUF ] &&
Nelm = ExprName [ Name = $NORCVD ]

]
SmtWaitPending
SmtForeach
[

Cards = < Cardinality [ Name = $CV_4 && Upperbound = $UPB ] > &&
Pragmas = < ValuePragma [ Name = "renamecardvar" &&

X = StringPragmaExpression [ S = $ID ] ]
> &&

Body = Block [ Scope = "no scopename" && Statements =
<

SmtIf
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[
Cond = ExprBinop

[
Optor = OpAnd &&
Operanda = ExprIsOwner
[

Shape = $LHSCLONE3 &&
Proc = ExprField
[

Rec = ExprDeref [ Ref = ExprName [ Name = $CB ]] &&
Fld = "_p"

]
] &&
Operandb = ExprBinop

[
Optor = OpEqual &&
Operanda = ExprSender
[

Shape = LocSelection [ Shape = $RSELREFCLONE3 && Indices = $RSELSELCLONE3 ]
] &&
Operandb = ExprName [ Name = $CV_2 ]

]
]

&&
Thenbody = Block [ Scope = "no scopename" && Statements =
<

SmtAssign
[

Lhs = $LHSCLONE4
&&
Rhs = ExprSelection
[

Shape = ExprName [ Name = $BUF ] &&
Indices = < ExprName [ Name = $NO2 ] >

]
]

SmtAssign
[

Lhs = LocName [ Name = $NO2 ] &&
Rhs = ExprBinop
[

Optor = OpPlus &&
Operanda = ExprName [ Name = $NO2 ] &&
Operandb = ExprInt [ Content = "1" ]

]
]
>]

]
>]

]
>]
]

>] &&

Elsebody = Block [ Scope = "no scopename" && Statements =
<

SmtForeach
[

Cards = < Cardinality [ Name = $CV_5 && Upperbound = $UPB ] > &&
Pragmas = < ValuePragma [ Name = "renamecardvar" &&

X = StringPragmaExpression [ S = $ID ] ]
> &&

Body = Block [ Scope = "no scopename" && Statements =
<

SmtIf
[

Cond = ExprBinop
[

Optor = OpAnd &&
Operanda = ExprIsOwner
[

Shape = $LHSCLONE5 &&
Proc = ExprName [ Name = $CV_2 ]

] &&
Operandb = ExprBinop

[
Optor = OpEqual &&

Operanda = ExprSender
[

Shape = LocSelection [ Shape = $RSELREFCLONE4 && Indices = $RSELSELCLONE4 ]
] &&
Operandb = ExprField

[
Rec = ExprDeref [ Ref = ExprName [ Name = $CB ]] &&
Fld = "_p"

]
]
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]
&&
Thenbody = Block [ Scope = "no scopename" && Statements =
<

SmtAssign
[

Lhs = $LHSCLONE6
&&

Rhs = ExprSelection
[
Shape = $RSELREFCLONE5 &&

Indices = $RSELSELCLONE5
]

]
>]

]
>]

]
>]

]
>]

]

SmtWaitPending

>]
$YY
>

&&
Declarations =
<

$DECLARATIONS
DeclGlobalVariable
[

T = TypeShape
[

Elmtype = $BUFTYPE &&
Sizes = < ExprInt [ Content = "1"] >

] &&
Name = $BUF && Init = ExprNull

]

DeclLocalVariable [ Scope = $SCOPE_4 && T = TypeInt && Name = $NO1 && Init = ExprInt [ Content = "0" ] ]
DeclLocalVariable [ Scope = $SCOPE_5 && T = TypeInt && Name = $NO2 && Init = ExprInt [ Content = "0" ] ]
DeclLocalVariable [ Scope = $SCOPE_5 && T = TypeInt && Name = $NORCVD && Init = ExprInt [ Content = "0" ] ]

DeclCardinalityVariable [ Name = $CV_0 ]
DeclCardinalityVariable [ Name = $CV_1 ]
DeclCardinalityVariable [ Name = $CV_2 ]
DeclCardinalityVariable [ Name = $CV_3 ]
DeclCardinalityVariable [ Name = $CV_4 ]
DeclCardinalityVariable [ Name = $CV_5 ]

>
]
{

// Embedded C++ code
$SCOPE_1 = new String(idGenerator->Unique("__scope_"));
$SCOPE_2 = new String(idGenerator->Unique("__scope_"));
$SCOPE_4 = new String(idGenerator->Unique("__scope_"));
$SCOPE_5 = new String(idGenerator->Unique("__scope_"));

$CV_0 = new String(idGenerator->Unique("__ca3_cv_"));
$CV_1 = new String(idGenerator->Unique("__unique_cv_"));
$CV_2 = new String(idGenerator->Unique("__ca3_cv_"));
$CV_3 = new String(idGenerator->Unique("__unique_cv_"));
$CV_4 = new String(idGenerator->Unique("__unique_cv_"));
$CV_5 = new String(idGenerator->Unique("__unique_cv_"));

$NO1 = new String(idGenerator->Unique("__ca3_no1_"));
$NO2 = new String(idGenerator->Unique("__ca3_no2_"));

$NORCVD = new String(idGenerator->Unique("__ca3_noRcvd_"));
$BUF = new String(idGenerator->Unique("__ca3_buf_"));

$LHSCLONE = (Location *)$LSEL->Clone();
$LHSCLONE2 = (Location *)$LSEL->Clone();
$LHSCLONE3 = (Location *)$LSEL->Clone();
$LHSCLONE4 = (Location *)$LSEL->Clone();
$LHSCLONE5 = (Location *)$LSEL->Clone();
$LHSCLONE6 = (Location *)$LSEL->Clone();

$RHSCLONE = (Expression *)$RHS->Clone();

$RSELREFCLONE = (Expression *)$RSELREF->Clone();
$RSELSELCLONE = (List *)$RSELSEL->Clone();
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$RSELREFCLONE2 = (Expression *)$RSELREF->Clone();
$RSELSELCLONE2 = (List *)$RSELSEL->Clone();
$RSELREFCLONE3 = (Expression *)$RSELREF->Clone();
$RSELSELCLONE3 = (List *)$RSELSEL->Clone();
$RSELREFCLONE4 = (Expression *)$RSELREF->Clone();
$RSELSELCLONE4 = (List *)$RSELSEL->Clone();
$RSELREFCLONE5 = (Expression *)$RSELREF->Clone();
$RSELSELCLONE5 = (List *)$RSELSEL->Clone();

}

END.
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[Aik98] A. Aiken, M. Fändrich, J. S. Foster, and Z. Su. A toolkit for construct-
ing type- and constraint-based program analyses. In Proceedings of
the Second International Workshop on Types in Compilation (TIC’98),
Kyoto, Japan. Mar 1998.

[Amd67] G. M. Amdahl. Validity of the single-processor approach to achieving
large scale computing capabilities. In AFIPS Conference Proceedings,
vol. 30, pp. 483–485. ACM, AFIPS Press, Reston, Va., 1967.

[ASC02] ASCI. The distributed ASCI supercomputer 2 (DAS-2) website, 2002.
http://www.cs.vu.nl/das2/ .

[Bax97] I. Baxter and C. Pidgeon. Software changes through design mainten-
ance. In Proceedings of the International Conference on Software Main-
tenance. IEEE, IEEE press, 1997.

[Ber98] J. A. Bergstra and P. Klint. The discrete time ToolBus — a soft-
ware coordination architecture. Science of Computer Programming,
vol. 31(2–3):pp. 205–229, 1998.

[Bra01] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong,
M. de Jonge, T. Kuipers, P. Klint, L. Moonen, P. A. Olivier,
J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. The Asf + Sdf
meta-environment: A component-based language development envir-
onment. Lecture Notes in Computer Science, vol. 2027:pp. 365–370,
2001.

[Bra02] M. van den Brand, J. Scheerder, J. J. Vinju, and E. Visser. Disambig-
uation filters for scannerless generalized LR parsers. In Computational
Complexity, pp. 143–158. 2002.

159



160 BIBLIOGRAPHY

[Bre91] L. C. Breebaart, E. M. Paalvast, and H. J. Sips. The Booster approach
to annotating parallel algorithms. In 1991 International Conference on
Parallel Processing, vol. II, pp. 276–277. 1991.

[Bre92] L. C. Breebaart, E. M. Paalvast, and H. J. Sips. A rule based transform-
ation sytem for parallel languages. In Third Workshop on Compilers for
Parallel Computers, p. 1321. ACPC/TR 928, Vienna, Austria, 1992.

[Bre95] L. C. Breebaart, P. F. G. Dechering, A. B. Poelman, J. A. Trescher,
J. P. M. de Vreught, and H. J. Sips. The Booster language: Syntax and
static semantics. Computational Physics report series CP-95-02, Delft
University of Technology, 1995.

[Bri98] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. In Proc. 7th Int. World Wide Web Conf. 14–18 Apr
1998.

[Cla99] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and J. Quesada. Maude: Specification and Programming in Rewriting
Logic. SRI International, 1999.

[Cor02] J. R. Cordy, I. H. Carmichael, and R. Halliday. The TXL Programming
Language, Version 10.2. Legasys Corp., Ontario, Canada, Apr 2002.

[Cra02] Cray Inc. Corporate website, 2002. http://www.cray.com/ .

[Cza00] K. Czarnecki and U. W. Eisenecker. Generative Programming. Methods,
Tools, and Applications. Addison-Wesley, 2000.

[Dec96] P. F. G. Dechering, L. C. Breebaart, F. Kuijlman, C. v. Reeuwijk, and
H. J. Sips. A sound and simple semantics of the forall statement
within the V-nus compiler framework. In 6th Workshop on Compilers
for Parallel Computers (CPC’96), pp. 59–71. Aachen, Germany, Dec
1996.

[Dec97a] P. F. G. Dechering, L. C. Breebaart, F. Kuijlman, and C. v. Reeuwijk.
Semantics and implementations of a generalized forall statement for
parallel languages. In International Parallel Processing Symposium, pp.
542–548. IEEE, Geneva, Apr 1997.

[Dec97b] P. F. G. Dechering, L. C. Breebaart, F. Kuijlman, C. v. Reeuwijk, and
H. J. Sips. A generalized forall concept for parallel languages. In Proc.
9th Intl. Workshop, Languages and Compilers for Parallel Computing,
LNCS 1239, pp. 605–607. 1997.

[Dec98] P. F. G. Dechering. Semantics for Compiling Data Parallelism. Ph.D.
thesis, Delft University of Technology, Delft, Mar 1998.



BIBLIOGRAPHY 161

[Dia94] S. L. Diamond. Architecture Neutral Distribution Format (ANDF).
IEEE Micro, vol. 14(6):pp. 73–76, Dec 1994.

[Don90] C. Donnelly and R. Stallman. Bison: the Yacc-compatible parser gener-
ator. Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
USA, Tel: (617) 876-3296, USA, Bison Version 1.12 edn., Dec 1990.

[Elm96] S. Elmohamed. Examples in high performance fortran. Website, 1996.
http://www.npac.syr.edu/projects/cpsedu/summer98summary/

examples/hpf/hpf.html .
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Summary

Rule-based Compilation of Data-parallel Programs
Certain computational problems are too big or complex for a conventional single-
processor system to solve in a reasonable amount of time. In such cases, parallel
computing is an approach that might be considered instead: by having several
processors work on the problem simultaneously, the total execution time can be
brought down to acceptable levels.

Unfortunately, writing explicitly parallel programs is a skill that does not
come very naturally to human beings. It is difficult to correctly keep track of
the different parallel program threads, and the need for communication and syn-
chronisation between these programs only adds to the complexity.

This is why much research has gone into the creation of high-level parallel
programming languages in which the user is shielded from (too much) explicit
parallelism. These languages allow the programmer to pretend to a considerable
extent that they are working in a conventional, single-thread model of computa-
tion.

This has been a quite successful approach as far as the applications program-
mer is concerned, but under the hood the complexity and the programming diffi-
culties have not gone away, but have merely been shifted around. The high-level
programs must still somehow be converted to explicitly parallel applications, only
now it is the compilation software, not the programmer, that is responsible for
achieving this, preferably in a manner that will lead to highly efficient target
code. Consequently, compilation techniques for parallel programming languages
have also become a fruitful area for research. Both the compilation algorithms
themselves, and the way in which they can be specified by the compiler builder
are of interest.

This thesis investigates particular technologies that can make the task of writ-
ing compilers for parallel programming languages more manageable and less error-
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prone. A compiler-generator framework called Rotan is described. Rotan can be
used to create a programmable compiler for a programming language. This com-
piler can be programmed by the compiler builder in a high-level, pattern-matching
transformation language called the Rule Language. This turns the compiler from
the conventional static ‘black box’ systems into a more dynamic, open transform-
ation system, that allows easy and modular experimentation, debugging, and
extension of compilation and optimisation algorithms.

Chapter 1 (Introduction) contains a general introduction to the thesis and
discusses the research question.

In Chapter 2 (Data Parallelism) we give a brief general introduction to parallel
programming, followed by a closer explanation of the data-parallel programming
model that will be the focus for the remainder of the thesis. In data-parallel pro-
gramming, the programmer specifies the distribution of data over the processors.
It is left to the compiler to choose and implement the efficient distribution of the
actual computations over the processors, and this is precisely where the challenge
lies.

In Chapter 3 (Compiler Construction Tools) existing compilation models for
sequential and parallel programming are described, and an overview of existing
compilation tools and approaches is given. This chapter also contains a review of
general-purpose transformation systems. The programmable compiler framework
called the Rotan system is proposed as a means of obtaining the levels of flexibility,
expressive power, and maintainability a compiler for (data-)parallel programming
languages requires.

Chapter 4 (The Rule Language) introduces the Rule Language, the rule-based
transformation language that forms one of the key components in the Rotan
framework. The Rule Language allows the compiler builder to implement trans-
lations and optimisations by specifying them as high-level transformations on the
parse tree of a source program. This chapter explains the syntax and gives an in-
formal operational semantics of the Rule Language as implemented in the current
Rotan prototype.

Chapter 5 (A Rotan Compiler for Vnus) describes the major test case for the
Rotan system: an implementation of a semi-automatically parallelising compiler
for the Vnus language. Vnus is a programming language used as an intermediate
format in the compilation process of higher-level (data-)parallel programming
languages; the word ‘semi-automatic’ signifies the fact that the compiler has help
during translation, in the form of the data distributions specified by the user. The
parallelisation and communication schemes used in this compiler are discussed,
and examples of their implementation as rewrite rules are given.

Chapter 6 (Experimental Results) presents a number of case studies in which
the Vnus compiler described in Chapter 5 is applied to data-parallel Vnus pro-
grams. Since a higher abstraction level is generally associated with a decrease
in efficiency, this chapter investigates the extent to which this holds true for the
target code generated by the Rotan Vnus compiler. The performance results of
these programs are then compared to those achieved by other compilers. As it
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turns out, there is indeed a performance penalty, but one that remains within the
bounds of acceptability.

Chapter 7 (Evaluation) evaluates the experiences with the general Rotan sys-
tem both in terms of its own design criteria as well as in comparison to a different
compilation system in use at the Delft University of Technology. The evaluations
show that the expected advantages of a high-level, rule-based compilation system
are real and significant.

Chapter 8 (Conclusion) finishes with a summary and discussion of the presen-
ted research topics, concluding with some suggestions for future research direc-
tions.

Leo Breebaart





Samenvatting

Regelgebaseerde Compilatie van Data-parallelle Programma’s
Er zijn problemen die te groot of te complex zijn om door een conventioneel uni-
processor systeem opgelost te worden binnen een redelijke tijdsduur. In zulke
gevallen is parallel rekenen een aanpak die overwogen zou kunnen worden: door
verschillende processoren tegelijkertijd aan het probleem te laten werken kan de
totale uitvoeringstijd teruggebracht worden tot acceptabele niveaus.

Helaas is het zo, dat het schrijven van expliciet parallelle programma’s een
bekwaamheid is die de mens niet van nature gegeven is. Het is moeilijk om zicht
te houden op de verschillende parallelle programmalijnen, en de noodzaak tot
communicatie en synchronisatie tussen deze lijnen laat de complexiteit alleen nog
maar toenemen.

Dit verklaart waarom er zo veel onderzoek is verricht naar het creëren van
hogere parallelle programmeertalen die de gebruiker afschermen van (te veel) ex-
pliciet parallellisme. Deze talen staan het de programmeurs toe in hoge mate te
doen alsof zij werken met een conventioneel, niet-parallel programmeermodel.

Deze aanpak is redelijk succesvol geweest voor zover het de applicatieprogram-
meur betreft, maar onderhuids zijn de complexiteit en de programmeerproblemen
niet zozeer verdwenen, als wel verschoven. De in de hogere programmeertaal uitge-
drukte programma’s moeten nog steeds, op de één of andere manier, omgezet wor-
den naar expliciet parallelle applicaties. Het is nu echter de compilatie-software,
en niet de programmeur, die de verantwoordelijkheid heeft dit te bereiken, en
wel liefst op een zodanige wijze dat er hoogst efficiënte doelcode geproduceerd
wordt. Compilatietechnieken voor parallelle programmeertalen zijn derhalve ook
een dankbaar onderzoeksgebied geworden. Zowel de compilatie-algoritmes zelf,
als de manier waarop deze gespecificeerd kunnen worden door de compilerbouwer
zijn hier van belang.

Dit proefschrift onderzoekt specifieke technologieën waarmee de taak van het
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schrijven van compilers voor parallelle programmeertalen beter beheersbaar en
minder foutgevoelig wordt. Het beschrijft een compiler-generator raamwerk ge-
naamd Rotan. Rotan kan gebruikt worden om een programmeerbare compiler
voor een programmeertaal te maken. Deze compiler kan door de compilerbouwer
geprogrammeerd worden in een hogere, patroonherkennende transformatietaal,
de Rule Language geheten. Hiermee verandert de compiler van een conventioneel,
statisch ‘black box’ systeem in een meer dynamisch, open transformatiesysteem,
waarin gemakkelijk en modulair experimenteren, debuggen, en uitbreiden van
compilatie- en optimalisatie-algoritmen mogelijk zijn.

Hoofdstuk 1 (Inleiding) bevat een algemene inleiding tot het proefschrift, en
bespreekt de onderzoeksvraag.

In Hoofdstuk 2 (Data-parallellisme) wordt begonnen met het geven van een
korte algemene inleiding tot het parallel programmeren, gevolgd door een na-
dere uitleg over het data-parallelle programmeermodel waar in dit proefschrift
verder de nadruk op zal liggen. Data-parallel programmeren houdt in dat de pro-
grammeur de distributie van data over de processoren specificeert. Het is aan de
compiler om dan voor de daadwerkelijke berekeningen een efficiënte distributie
over de processoren te kiezen en te implementeren, en dit is nu precies waar de
uitdaging ligt.

In Hoofdstuk 3 (Gereedschappen voor Compilerconstructie) worden bestaan-
de compilatiemodellen voor sequentieel en parallel programmeren beschreven,
en wordt een overzicht gegeven van bestaande compilatiegereedschappen. Dit
hoofdstuk bevat ook een bespreking van generieke transformatiesystemen. Voor
het compileren van (data-)parallelle programmeertalen zijn bepaalde niveaus van
flexibiliteit, uitdrukkingskracht, en onderhoudbaarheid nodig, en het program-
meerbare compilatieraamwerk Rotan wordt gëıntroduceerd als gereedschap om
deze niveaus mee te bereiken.

Hoofdstuk 4 (De Rule Language) beschrijft de Rule Language, de op her-
schrijfregels gebaseerde transformatietaal die een van de sleutelcomponenten in
het Rotan-raamwerk is. De Rule Language stelt de compilerbouwer in staat om
vertalingen en optimalisaties te implementeren door deze op hoog niveau te speci-
ficeren als transformaties op de programmaboom van de broncode. Dit hoofdstuk
beschrijft de syntax en geeft een informele operationele semantiek van de Rule
Language zoals deze is gëımplementeerd in het huidige Rotan-prototype.

Hoofdstuk 5 (Een Rotan-Compiler voor Vnus) gaat dieper in op een grote
testcase voor het Rotan-systeem: een implementatie van een semi-automatisch
parallelliserende compiler voor de taal Vnus. Vnus is een programmeertaal die
gebruikt wordt als een tussenformaat in het compilatieproces van (data-)parallelle
programmeertalen van hoger niveau; het begrip ‘semi-automatisch’ slaat op het
feit dat de compiler hulp krijgt bij het vertalen in de vorm van de door de gebruiker
gespecificeerde data-distributies. De parallellisatie en communicatie-schema’s die
de compiler gebruikt worden besproken, en voorbeelden van hun implementatie
als herschrijfregels worden gegeven.

Hoofdstuk 6 (Experimentele Resultaten) presenteert een aantal voorbeelden
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waarin de in Hoofdstuk 5 beschreven Vnus compiler wordt toegepast op data-
parallelle Vnus programma’s. Aangezien een hoger abstractieniveau in het alge-
meen leidt tot een verlies aan efficiëntie, onderzoekt dit hoofdstuk in hoeverre dit
ook geldt voor de doelcode die gegenereerd wordt door de Rotan Vnus compiler.
De prestaties van deze programma’s worden dan vergeleken met die welke bereikt
worden door andere compilers. Het blijkt dat er inderdaad enig prestatieverlies
optreedt, maar in een mate die binnen de grenzen van het acceptabele blijft.

Hoofdstuk 7 (Evaluatie) evalueert de ervaringen met het generieke Rotan sys-
teem zowel in termen van de oorspronkelijke ontwerpcriteria als in vergelijking
met een ander compilatiesysteem dat in gebruik is aan de Technische Universi-
teit Delft. De evaluaties tonen aan dat de verwachte voordelen van een op hoog
niveau gecodeerd, op herschrijfregels gebaseerd compilatiesysteem reëel en signi-
ficant zijn.

Hoofdstuk 8 (Conclusie) eindigt met een samenvatting van en discussie over
het gepresenteerde onderzoek, resulterende in enige suggesties voor toekomstig
onderzoek.

Leo Breebaart
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